Bioethanol Production from Iles-Iles (Amorphopallus campanulatus) Flour by Fermentation using Zymomonas mobilis

Due to the depletion of fossil oil sources, Indonesia attempts to search new source of bioenergy including bioethanol. One of this sources is Iles-iles tubers (Amorphophallus campanulatus), which is abundantly available in Java Indonesia. The carbohydrate content in Iles-Iles tuber flour was 77% and it can be converted to ethanol by three consecutive steps methods consist of liquefaction-saccharification using α and β-amylase, respectively and then followed by fermentation by using Z. mobilis. The objective of this research was to convert the Iles-iles flour to bioethanol by fermentation process with Z.mobilis. The ethanol production process was studied at various starch concentration 15-30% g/L, Z. mobilis concentration (10-40%) and pH fermentation of (4-6). The result showed that the yield of bioethanol (10.33%) was the highest at 25% starch concentration and 25% of Z.mobilis concentration. The optimum conditions was found at 4.5, 30°C, 10%, 120 h for pH, temperature, Z. mobilis concentration and fermentation time, respectively at which ACT tuber flour produced a maximum ethanol of 10.33 % v/v.
Article History: Received November 12nd 2015; Received in revised form January 25th 2016; Accepted January 29th 2016; Available online
How to Cite This Article: Kusmiyati , Hadiyanto,H and Kusumadewi, I (2016). Bioethanol Production from Iles-Iles (Amorphopallus campanulatus) Flour by Fermentation using Zymomonas mobilis. Int. Journal of Renewable Energy Development, 9(1), 9-14
http://dx.doi.org/10.14710/ijred.5.1.9-14
Article Metrics:
- Aggarwal, A. K. (2007). Biofuel (alcohol and biodiesel) application as fuels for international combustion engines. Progres in Energy and Combution Sciense , 33., 233-271.
- Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52, 858–875.
- Balat, M., Balat, H., Oz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.
- Choi, Gi-Wook., Kang, Hyun-Woo., Kim, Young-Ran., Chung, Bong-Woo. (2008) Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnology and Bioprocess Engineering, 137,65-771.
- Ferreira, S., Duarte, A. P., Ribeiro, H. M. L., Queiroz, J. A., Domingues, F. C. (2009) Response surface optimization of enzymatic hidrolysis of Cytisus Ladanifer and Cytisus Striatus for bioathanol production. Biochemical Engineering Journal, 59, , 618-628.
- Mac Lean H.L., Lave, L.B. (2003) Evaluating automobile fuel/propulsion system technologies. Prog Ener Combust Sci, 29, 1–69.
- Polycarpou, P. (2009). Bioethanol production from Asphodelus aestivus: A review. Renewable Energy, 34, 2525–2527.
- Rani, P., Sharma, S., Garg, F.C., Raj Kushal and Wati Leela ( 2010) Ethanol production from potato flour by Saccharomyces cerevisiae. Indian Journal of Science and Technology, 3 ( 7) , 733-736.
- Rogers, P. L., Jeon, Y. J., Lee, K. J,, Lawford, H. G. (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol, 108, 263-288.
- Sa´nchez, O. & Cardona, C.A. (2008) Trends in biotechnological production of fuel etanol from different feedstocks. Bioresource Technology, 99, 5270-5295
- Samsuri, M., Gozan, M., Mardias, R., Baiquni, M., Hermansyah, H., Wijanarko, A., Prasetya, B., Nasikin, M. (2007) Pemanfaatan Selulosa Bagas untuk Produksi Etanol Melalui Sakarifikasi dan Fermentasi Serentak dengan Enzim Xylanase. Makara Teknologi, 11(1), 17-24.
- Somogy, M.A. (1945) A new reagent for determination of sugar. J. Biol. Chem.,160, 61–68
- Struch T, Neuss B, Bringer-Mayer S, Sahm H. (1991) Osmotic Adjustment of Zymomonas mobilis to Concentrated Glucose Solutions. Application Microbiol, Biotechnol, 34, 518-523.
- Sun, Y. & Cheng, J. (2002) Hidrolysis of lignocellulosic material for ethanol production: a review. Bioresources Technology, 82, 1-11.
- Suresh, K., Sree, N.K., Rao, L. V.(1999) Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresource Technology, 68, 301-304.
- Zang, K & Feng, H. (2010) Fermentation potentials of zymomonas mobilis and its application in ethanol production from low-cost raw sweet potato. African Journal of Biotechnology, 9(37), 6122-6128.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to International Journal of Renewable Energy Development and Center of Biomass and Renewable Energy, Department of Chemical Engineering Diponegoro University as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from International Journal of Renewable Energy Development and Center of Biomass and Renewable Energy, Department of Chemical Engineering Diponegoro University.
International Journal of Renewable Energy Development and Center of Biomass and Renewable Energy, Department of Chemical Engineering Diponegoro University, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the International Journal of Renewable Energy Development are sole and exclusive responsibility of their respective authors and advertisers.