Analysing the Possibility of Extracting Energy from Ocean Waves in Cabo-Verde to Produce Clean Electricity - Case-Study: the Leeward Islands

*Wilson Madaleno Leger Monteiro -  Faculty of Science and Technology, University of Cabo-Verde , Palmarejo Campus, 279C – Praia Cabo-Verde, Cape Verde
António Sarmento -  Lisbon High Technical Institute, Technical University of Lisbon , Alameda Campus, CP 1049 -001- Lisbon, Portugal
Published: 2 Feb 2019.
Open Access Copyright (c) 2019 International Journal of Renewable Energy Development
Citation Format:
Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 406 258
Abstract

This work analyses the possibility of extracting energy from the ocean waves around the Leeward Islands of Cabo-Verde. This study was based on 31 years of wave and wind data, obtained through the SOWFIA - Streamlining of Ocean Wave Farm Impact Assessment, at 16° N-24° W. Then, the SWAN - Simulating Waves Nearshores - was used to perform the wave transformations to the shore. As the number of waves is very high, the cluster analysis and the Non-Parametric Wilcoxon Test were used to reduce the computing time by SWAN. The results pointed to the South of these islands and the East Coast of Maio island as the best locations for wave energy extraction. The use of the power matrix of some commercial devices that are available, such as Wave Dragon (7 MW), Pelamis (750 kW) and AquaBuoy (250 kW), allowed to estimate the best devices scale factors that leads to their best Capacity Factor (CF), at the target regions. Thus, the Wave Dragon is the most indicated device (CF=71%), at the scale of 0.3, followed by AquaBuoy scaled by 0.4 (CF=57%) and Pelamis scaled by 0.5, with CF=26%. However, in a natural scale, AquaBuoy is the most efficient device (CF = 18.8%) in comparison to the Wave Dragon (CF=17%) and Pelamis (CF=15%). AquaBuoy presented the best cost-benefit ratio (C/B = 0.135 USD/kWh) followed by Wave Dragon (C/B= 0.235 USD/kWh) and Pelamis (C/B = 0.390 USD/kWh). The limitation of the number of Wave Energy Converters to implement the wave power plant affects negatively the cost of its investment.

©2019. CBIORE-IJRED. All rights reserved

Article History: Received March 27th 2018; Received in revised form October 16th 2018; Accepted January 5th 2019; Available online

How to Cite This Article: Monteiro, W.M.L., and Sarmento, A (2019). Analysing the Possibility of Extracting Energy from Ocean Waves in Cabo-Verde to Produce Clean Electricity - Case-Study: The Leeward Islands. Int. Journal of Renewable Energy Development, 8(1), 103-112

https://doi.org/10.14710/ijred.8.1.103-112

Keywords
Wave Energy; Cluster Analysis; Wilcoxon Test; Cabo-Verde; Leeward Islands

Article Metrics:

  1. Baserra, E.R. (2007) Avaliação de Sítios para aproveitamento dos recursos Energéticos das Ondas do Mar, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
  2. Bholowalia, P. and Kumar, A. (2014) EBK – Mean: A Cluster Technique Based on Elbow Method and k-mean in WSN, International Journal of Computer Applications, Vol. 105, No. 9.
  3. BODC.(2018). British Oceanographic Data Centre: https://www.bodc.ac.uk. Accessed 2018.
  4. Booji, N., Ris, R.C., Holthuijsen, L.H. (1999) A third-generation wave model for coastal regions, Part I, Model description and validation, J.Geoph Research, 104, N0.C4.
  5. Boyle, G. (2004) Renewable Energy: Power for a Sustainable Future, 2nd Ed., Oxford University Press, Oxford.
  6. Carvalho, J.M.C. (2013) Elaboration of Third International Conference on Sustainable Development in Small Island States in Development, United Nations Development Program, National Report, Republic of Cape-Verde
  7. CSIRO (2012) Ocean Renewable Energy: An Analysis of Ocean Energy in__Australia.http://www.csiro.au/~/Media/BEA2D117313c498BAD26624BOBE911F9.ashx. Accessed 2018.
  8. Dantas, C.E.B. (2015) Estudo dos Conversores de Energia Ondomotriz em Energia Eléctrica, Faculdade de Tecnologia, Departamento de Mecânica, Universidade de Brasília, Brasil.
  9. Electra, Relatório de Contas 2012. ElectraEmpresa de Electricidade e Água, Cabo-Verde, http://www.electra.cv/index.php/2014-05- 20-15-47-04/relatorios-sarl. Accessed 2012.
  10. Electra, Relatório de Contas 2016. ElectraEmpresa de Electricidade e Água, Cabo-Verde, http://www.electra.cv/index.php/2014-05- 20-15-47-04/relatorios-sarl. Accessed 2016
  11. EMEC – Wave devices page. http://www.emec.org.uk/marine-energy/wave-devices/. Accessed 2018.
  12. Fox, W.P. and Garcia, F.P. (2013) Modeling and Linear Programming in Engineering Management, Intech, ISBN 978-953-51-1037-8.
  13. GESTO (2011) Plano Energético Renovável CaboVerde. Gesto-Energy Solutions, Algés, Portugal.
  14. Henderson, R.(2006) Design, Simulation and Testing of a Novel Hydraulic Power Take-Off System for the Pelamis Wave Energy Converter, Energy , Vol.31.
  15. Hughes. S.A. (1993) Physical Models and Laboratory Techniques in Coastal Engineering, Coastal Engineering Research Center, Waterways Experiment Station, World Scientific, USA.
  16. Kempner, R. (2014) Ocean Energy Technology Brief 4, International Renewable Energy Agency – IRENA.
  17. Koca, K., Oumeraci, H., Angelelli, E., Suffredini, R. Kortenhaus,A., Zanuttigh,B. Cantù,M. and Franceschi, G. (2013) Recent Advance in the Development of Wave Energy Converters, Proc. EWTEC’2013 – European Wave and Tidal Energy Conference, Aalborg, Denmark.
  18. Kofeod, J.P., Frigaard, P., Friis – Madsen, E., Sorensen, H.C., (2006) Prototype Testing of the Wave Energy Converter Wave Dragon, Enery, vol. 31.
  19. Komen, G.J., Cavaleri, I., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A.E.M. (1994) Dynamics and modelling of ocean waves, Cambridge University Press, Cambridge.
  20. Mackay, E.B.L., Baha, J A.S. and Challenor, P.G. (2010) Uncertainty in wave energy resource assessment. Part 2: Variability and predictability, Renewable Energy, 35.
  21. Mehta, V.K. and Mehta, R.T. (2005). Principles of Power System, revised edition, S.Chand and Company LTD, AN ISO 9001:2000, Ram Nagar, New Delhi – 10055.
  22. Monteiro, W.M.L. and Sarmento, A. (2014) Cape-Verde Offshore Wave Energy Resources Characterization, proc. AWTEC’2014-GRAND RENEWABLE ENERGY, Tokyo Big Sight, Japan.
  23. Monteiro, W.M.L., Sarmento, A., Fernandes, A. and, Fernandes, J. (2017). Statistical Analysis of Wave Energy Resources Available for Conversion at Natural Caves of Cape-Verde Islands, International Journal of Renewable Energy Sources, 2.
  24. Mora-Figueroa, V.O., Olivares, C.H., Holmes, B., and O’Hagan, A.M. (2011) Sowfia – Streamlining of Ocean Wave Farms Impact Assessment, Catalogue of Wave Energy Test Centres, IEE/09/809/SI2.558291, March.
  25. Nakayama, Y. and Boucher, R.F. (1999) Introduction to Fluid Mechanics, Butter worth Heinemann, Oxford.
  26. Norusis, M.J. (2010) Chapter 16, Cluster Analysis, PASW Statistics 18 Statistical Procedures Companion, Upper Saddle River, NJ.
  27. Payne, G. (2008) Guidance for the Experimental Tank Testing of Wave Energy Converters, Supergen Marine.
  28. Pelamis (2014) Pelamis Technology. http://www.pelamis.com/pelamis technology. Accessed 2018.
  29. Salter,S. (1974) Wave Power, Nature.
  30. Selenec, Rapport Annuel 2015, Selenec – SociétéNational d’ÉléctricitéduSénégal, Senegal (2015).
  31. Siocean (2014) Ocean Energy: Cost of Energy and Cost Reduction Opportunities. http://siocean.eu/en/upload/docs/140037-Siocean-report-web.pdf. Accessed 2018.
  32. Tan, P-N., Steinbach, M. and Kumar, V. (2005) Cluster Analysis; basic concepts and algorithms In: Introduction to data Mining, Addison-Wesley, Upper Saddle River, N.J.
  33. Tolman, H.L. (1999) User manual and system documentation of Wave Watch-III version 1.18, OMB Tchecnical Note 166, N.O.A.A, National Centre for Environmental Prediction, MD, USA.
  34. Wave 2oTM-Clean Water from Ocean Waves, Wave 2oTM in Cabo-Verde: https://www.eip-water.eu/sites/default/files/01%20-%20Wave2O%20in%20Cape%20Verde.pdf. Accessed 2015.
  35. Weaver, K.F., Morales, V., Dunn, S.L., Godde, K. and Weaver, P.F. (2017) Statistical Analysis in Research: with applications in the biological and life sciences, Jhon Wiley and Sons. Inc, Hoboken, NJ, USA.
  36. Weinstein, A., Fredikson, G. Parks, M.J., Neilslen, K. (2004) Aqua Buoy - The Offshore Wave Converter. Numeric Modeling and optimization. Proceedings of Oceans’04 MIS/IEE Techo –Ocean’04, Kobe, Japan, November, 2004.