skip to main content

Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production

Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan PUSPIPTEK Serepong, Tangerang Selatan 15314,, Indonesia

Published: 15 Jul 2016.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:

Lignocellulosic material, which consist mainly of cellulose, hemicelluloses and lignin, are among the most promising renewable feedstocks for the production of energy and chemicals.   The bagasse residue of sweet sorghum can be utilized as raw material for alternative energy such as bioethanol.  Bioethanol production consists of pretreatment, saccharification, fermentation and purification process.  The pretreatment process was of great importance to ethanol yield.  In the present study, alkaline pretreatment was conducted using a steam explosion reactor at 1300C with concentrations of NaOH  6, and 10% (kg/L) for 10, and 30 min.  For ethanol production separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) process were conducted with 30 FPU of Ctec2 and Htec2 enzyme and yeast of Saccharomyces cerevisiae.   The results showed that maximum cellulose conversion to total glucose plus xylose were showed greatest with NaOH 10% for 30 min.  The highest yield of ethanol is 96.26% and high concentration of ethanol 66.88 g/L were obtained at SSF condition during 48 h process. Using SSF process could increase yields and concentration of ethanol with less energy process.


Article History: Received January 16th 2016; Received in revised form May 25th 2016; Accepted June 28th 2016; Available online

How to Cite This Article: Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016) Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. Int. Journal of Renewable Energy Development, 5(2), 113-118.


Fulltext View|Download

Article Metrics:

  1. Ballesteros, M., Oliva, J.M, Negro, M.J., Manzanares, P., Ballesteros., I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces 39:1843 marxianus CECT 10875. Process Biochemistry. 39: 1843–1848
  2. Carvalheiro, F.,Duarte,L.C., Girio,F.M. (2008) hemicellulose biorefineries: a review on biomass pretreatments. J.Sci Ind. Res 67. 849-864
  3. Chaturvedi, V and Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Journal 3 Biotech. 2013 Oct; 3(5): 415–431
  4. Dahnum, D., Tasum S.O., Triwahyuni, E., Nurdin, M., Abimanyu, H., (2015). Comparison of SHF and SSF Processes using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia. Volume 68:107-116
  5. Havannavar, R. B. & Geeta, G. S. (2007). Pre-treatment of agroresidues for release of maximum reducing sugar. Karnataka J. Agric. Sci. 20 (4) : 771-772
  6. Kumar, R., Wyman, C.E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol. Prog. 25:302–314
  7. Klinke HB, Thomsen AB, Ahring BK., (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10-26
  8. Lijun Wang, zhenglin Luo, Abolghasem Shahbazi. (2013). Optimization of simulteneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial Crops and products. 42 : 280-291
  9. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol . 96: 673–686
  10. Olsson, L., Hahn-Hagerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18:312-331
  11. Shen,F., Saddler, J.N.,Liu,R.,Lin,L., Deng,S., Zhang,Y., Yang,G., Xiao,H., Li,Y. (2011). Evaluation of Steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydrate Polymers. 86:1542-1548
  12. Sluiter, B., Hames, R., Ruiz, C., Scarlata, J., Sluiter, D., Templeton, M., and Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical report NREL/TP-510-Int
  13. Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, J Bioresource Technology. 83 : 1–11
  14. Taherzadeh, Muhammad J. and Karimi, Keikhosro. (2008). Pretreatment of Lignocellulosic Waste to Improve Bioethanol and Biogas Production, Int. J. Mol. Sci, 9: 1621-1651
  15. Talebnia, F., Karakashev, D.B., Angelidaki, I., (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., Vol. 101, No. 13, 2010, p. 4744-4753
  16. Zhao, Y., Wang, Y., Zhu, J.Y., Ragauskas, A. & Dengl, Y. (2008). Enhanced Enzymatic Hydrolysis of Spruce by Alkaline Pretreatment at Low Temperature. Biotechnol. Bioeng. 99 (6)

Last update:

  1. Conversion of cellulosic biomass through consolidated bioprocessing method using Clostridium thermocellum

    Eka Triwahyuni, Muryanto, Roni Maryana, Yanni Sudiyani, Haznan Abimanyu. PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity, 2972 , 2023. doi: 10.1063/5.0183371
  2. Comprehensive study on the effects of process parameters of alkaline thermal pretreatment followed by thermomechanical extrusion in sugar liberation from Eucalyptus grandis wood

    Pablo Doménech, Paloma Manzanares, Cristina Álvarez, Mercedes Ballesteros, Aleta Duque. Holzforschung, 75 (3), 2021. doi: 10.1515/hf-2020-0068
  3. Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis

    Yasindra Sandamini Chandrasiri, W. M. Lakshika Iroshani Weerasinghe, D. A. Tharindu Madusanka, Pathmalal M. Manage. International Journal of Renewable Energy Development, 11 (1), 2022. doi: 10.14710/ijred.2022.41774
  4. Sustainable Future for Human Security

    Ajeng Arum Sari, Anis Kristiani, Hendris Hendarsyah Kurniawan, R. Irni Fitria Anggraini. 2018. doi: 10.1007/978-981-10-5430-3_7
  5. Optimization of Bioethanol Production after Enzymatic Treatment of Sweet Sorghum Stalks

    Hamadou Bakari, Djomdi, Zieba Falama Ruben, Djouldé Darnan Roger, Delattre Cedric, Pierre Guillaume, Dubessay Pascal, Michaud Philippe, Christophe Gwendoline. Waste and Biomass Valorization, 14 (8), 2023. doi: 10.1007/s12649-022-02026-y
  6. Conversion of oil palm empty fruit bunch into bioethanol through pretreatment with CO2 as impregnating agent in alkali explosion

    Eka Triwahyuni, Apik Khautsart Miftah, Muryanto Muryanto, Roni Maryana, Yanni Sudiyani. Biomass Conversion and Biorefinery, 2023. doi: 10.1007/s13399-023-04102-2
  7. Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation

    Thirawat Mueansichai, Thaneeya Rangseesuriyachai, Nuttha Thongchul, Suttichai Assabumrungrat. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.43740
  8. Second and Third Generation of Feedstocks

    Yanni Sudiyani, Deliana Dahnum, Dian Burhani, Ary Mauliva Hada Putri. 2019. doi: 10.1016/B978-0-12-815162-4.00010-0

Last update: 2024-04-14 21:15:01

  1. Comprehensive study on the effects of process parameters of alkaline thermal pretreatment followed by thermomechanical extrusion in sugar liberation from Eucalyptus grandis wood

    Pablo Doménech, Paloma Manzanares, Cristina Álvarez, Mercedes Ballesteros, Aleta Duque. Holzforschung, 75 (3), 2021. doi: 10.1515/hf-2020-0068
  2. The potency of fenton-polyaluminum chloride for black liquor treatment

    Sari A.A.. Sustainable Future for Human Security: Environment and Resources, 2017. doi: 10.1007/978-981-10-5430-3_7
  3. Evaluation and comparison between simultaneous saccharification and fermentation and separated hydrolysis and fermentation process

    Sudiyani Y.. Second and Third Generation of Feedstocks: The Evolution of Biofuels, 2019. doi: 10.1016/B978-0-12-815162-4.00010-0