skip to main content

MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review

1National Institute of Technology Kurukshetra, India

2NIT Kurukshetra, India

Published: 15 Jul 2016.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:
Abstract

The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP) and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT) is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems.

 

Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online

How to Cite This Article: Sameeullah, M. and Swarup, A. (2016). MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2), 79-94.

http://dx.doi.org/10.14710/ijred.5.2.79-94

 

Fulltext View|Download
Keywords: Renewable Energy System, Solar Photovoltaic, Solar Power Conversion, Maximum Power Point Tracking, Partial Shading, Global MPPT

Article Metrics:

  1. Kumar, A., Gomathinayagam, S., Giridhar, G., Mitra, I., Vashita, R., Meyer, R., Schwandt, M. & Chhatbar, K. (2014) Field experiences with operation of solar radiation resource assessment stations in India. Energy Procedia, 49, 2351-2361
  2. NREL (2014) Research cell efficiency records 2014 http://www.nrel.gov/ncpv/pdfs/cell_efficiency_explanatory_notes.pdf
  3. Esram, T., & Chapman, P. L (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 22 (2), 439-449
  4. Aureliano, M., Brito, G., Galotto, L., Sampaio, L.P., Melo, G.A., & Canesin, C.A. (2013) Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Transactions on Industrial Electronics, 60 (3), 1156-1167
  5. Salas, V., Olias, E., Barado, A., & Lazaro, A. (2006) Review of the maximum power point tracking algorithms for stand-alone photovoltaic system. Solar Energy Materials & Solar Cells, 90 (11), 1555-1578
  6. Mohanty, P., Bhuvaneswari, G., Balasubremanian, R., & Dhaliwal, N.K. (2014), MATLAB based modeling to study the performance of different techniques used for solar PV system under various operating conditions. Renewable and Sustainable Energy Reviews, 38, 581-593
  7. Rawat, R., & Chandel, S.S. (2013) Review of Maximum Power Point Techniques for Solar Photovoltaic Systems. Energy Technologies, 1 (8), 438-448
  8. Villalva, M.G., Gazoli, J.F, & Filho, E.R. (2009) Comprehensive Approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24 (5), 1198-1208
  9. Lobera, D.T., & Valkealahti, S. (2014) Inclusive dynamic thermal and electric simulation model of solar PV systemsunder varying atmospheric conditions. Solar Energy, 105, 632-647
  10. Ishaque, K., Salam, Z., & Syafruddin (2011) A comprehensive MATLAB simulink PV system simulator with partial shading capability based on two diode model. Solar Energy, 85 (9), 2217-2227
  11. Subidhi, B., & Pradhan, R. (2012) A comparative study on solar array parameter extraction methods. Inderscience International Journal of Renewable Energy Technolgy, 3, 295–315
  12. Leedy, A.W., & Garcia, K.E. (2013) Approximation of P-V characteristic curves for use in maximum power point tracking algorithms. 45th Southeastern Symposium on System Theory, Waco, 88-93
  13. Khatib, T.T.N., Mohamed, A., & Amim, N. (2010) An Improved indirect maximum power point tracking method for standalone photovoltaic systems. 9th WSEAS International Conference on Application of Electrical Engineering, Penang, 56-62, 23-25
  14. Masoum, M.A.S., Dehbonei, H., & Fuchs, E.F. (2002) Theoretical and experimental analyses of photovoltaic systems with voltage and current based MPPT. IEEE Transactions on Energy Conversion, 17 (4), 514-522
  15. Ahmad, J. (2010) A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. International Conference on Soft Technology and Engineering, San Juan, 247-250
  16. Adly, M., El-Sherif, H., & Ibrahim, M. (2011) Maximum Power Point Tracker for a PV cell using a fuzzy agent adapted by the Fractional open circuit voltage technique. IEEE International Conference on Fuzzy System, Taipei, 1918-1922
  17. Piao, Z.G., Gong, S.J., An, Y.H., & Bae Cho, G. (2013) A study on the PV simulator using equivalent circuit model and look-up table hybrid method. International Conference on Electrical Machines and Systems, Busan, 2128-2131
  18. Altas, I.H., & Sharaf, A.M. (1996) A novel on-line MPP search algorithm for PV arrays. IEEE Transactions on Energy Conversions, 11 (4), 748-754
  19. Mastromauro, R.A., Liserre, M. & Dell’Aquila, A. (2012) Control issues in single-stage photovoltaic systems: MPPT, current and voltage control
  20. IEEE Transactions on Industrial Informatics, 8 (2), 241-254
  21. Chen, Y., & Smedley, K.M. (2004) A cost-effective single-stage inverter with maximum power point tracking. IEEE Transactions on Power Electronics, 19 (5), 1289-1294
  22. Karanjkar, D.S., Chatterji, S., & Kumar, A. (2013) An improved current feedback based maximum power point tracking controller for solar photo-voltaic system. International Conference on Microelectronics, Communication and Renewable Energy, Kanjirapally, 1-6
  23. Hua, C., Lin, J., & Sen, C. (1998) Implementation of DSP-controlled photovoltaic system with peak power tracking. IEEE Transactions on Industrial Electronics, 45 (1), 99-107
  24. Jie, D., Chun-jiang, Z., & Yan-bang, L. (2012) Comparison of duty ratio perturbation & observation and reference voltage perturbation & observation methods applied in MPPT. IEEE 7th International Power Electronic and Motion Control Conference, 1358-1362
  25. Safari, A., & Maekhilef, S. (2011) Simulation and hardware implementation of incremental conductance MPPT using CUK converter. IEEE Transactions on Industrial Electronics, 58 (4), 1154-1161
  26. Sera, D., Mathe, L., Kerekes, T., Viorel, S., & Teodorescu, R. (2013) On the perturb-and-observe and incremental conductance MPPT for PV systems. IEEE Journal of Photovoltaics, 3 (3), 1070-1078
  27. Kajaer, S.B. (2013) Evaluation of the “hill climbing” and the “incremental conductance maximum power points trackers for photovoltaic power systems. IEEE Transactions on Energy Conversion, 27 (4), 922-929
  28. Hohm, D.P, & Roop, M.E. (2000) Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed. 28th IEEE Photovoltaic Specialists Conference, Anchorage, 1699-1702
  29. Brambilla, A., Gambarara, M., Garutti, A., & Ronchi, F. (1999) New approach to photovoltaic arrays maximum power point tracking. 30th Annual IEEE Power Electronics Specialist Conference, Charleston, 632-637
  30. Mamarelis, M., Petrone, G., & Spagnuolo, G. (2014) Design of sliding-mode-controlled SSEPIC for PV MPPT applications. IEEE Transactions on Industrial Electronics, 61 (7), 3387-3398
  31. Cabal, C., Martinez-Salamero, L., Seguir, L., & Alonso C. (2004) Maximum power point tracking based on sliding-mode control for output-series connected converters in photovoltaic systems. IET Power Electronics, 7 (4), 914-923
  32. Hajighorbani, S., Radzi, M.A.M., Ab Kadir, M.Z.M, Shafie, S., Khanaki, R., & Maghami, M.R. (2014) Evaluation of fuzzy logic subsets effects on maximum power point tracking for photovoltaic system. International Journal of Photoenergy, 2014, 1-13
  33. Abdourraziq, S., & El. Bachtiri Rachid (2014) A perturb and observe method using fuzzy logic control for PV pumping system. International Conference on Multimedia Computation and Systems, Marrakech, 1608-1612
  34. Atiqi, M.A., Zainuri, M., Amran, M., Radzi, M., Che Soh, A., & Rahim, A.B. (2014) Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc–dc converter. IET Renewable Power Generation, 8 (2), 183-194
  35. Kulaksiz, A.A., & Akkaya, R. (2012) A genetic algorithm optimized ANN based MPPT algorithm for a stnad-alone PV system with induction motor drive. Solar Energy, 86, 2366-2375
  36. Lin, W., Hong, C., & Chen, C.H. (2011) Neural-network-based MPPT control of a stand-alone hybrid power generation system. IEEE Transactions on Power Electronics, 26 (12), 3571-3581
  37. Farhat, S., Alaoui, R., Kahaji, A., & Bouhouch, L. (2013) Estimating the photovoltaic MPPT by artificial neural network. International Conference on Renewable and Sustainable Energy, Ouarzazate, 49-53
  38. Ocran, T.A., Junyi, C., Binggang, C., & Xinghua, S. (2005) Artificial neural network maximum power point tracker for solar electric vehicle. Tsinghua Science and Technology, 10 (2), 204-208
  39. Kollimalla, S.K., & Mishra, M.K. (2014) A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance. IEEE Transactions on Industrial Electronics, 29 (3), 602-610
  40. Lee, K.J., & Kim, R.Y. (2012) An adaptive maximum power point tracking scheme based on a variable scaling factor for photovoltaic systems. IEEE Transactions on Energy Conversion, 27 (4), 1002-1008
  41. Mei, Q., Shan, M., Liu, L. & Guerrero, J.M. (2011) A novel improved variable step-size incremental-resistance MPPT methods for PV systems. IEEE Transactions on Industrial Electronics, 58 (6), 2427-2434
  42. Zhang, F., Thanapalan, K., Procter, A., Carr, S., & Maddy, J. (2013) Adaptive hybrid Maximum Power Point Tracking method for a photovoltaic system. IEEE Transactions on Energy Conversion, 28 (2), 353-360
  43. Iqbal, A., Abu-Rub, H., & Ahmed, S.M. (2010) Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module. IEEE International Energy Conference, Manama, 51-56
  44. Jiang, L.L., Nayanasiri, D.R., Maskell, D.L., & Vilathgamuwa, D.M. (2013) A simple and efficient hybrid maximum power point tracking method for PV systems under partially shaded condition. 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 1513-1518
  45. Xiao Li, Yaoyu Li, & Seem, J.E. (2013) Maximum power point tracking for photovoltaic system using adaptive extremum seeking control. IEEE Transactions on Control Systems and Technology, 21 (6), 2315-2322
  46. Patel, H., & Agarwal, V. (2008) Matlab-based modeling to study the effects of partial shading on PV array characteristics. IEEE Transactions on Energy Conversion, 23 (1), 302-310
  47. Ding, K., Bian, X.G., Liu, H.H, & Peng, T. (2012) A matlab-simulink-based PV module model and its application under conditions of nonuniform Irradiance. IEEE Transactions on Energy Conversion, 27 (4), 864-872
  48. Dolara, A., Lazaroiu, G.C., Leva, S., & Manzolini, G. (2013) Experimental investigation of partial shading scenarios of PV (photovoltaic) modules. Energy, 55, 466-475
  49. Koutroulis, E., & Blaabjerg, F. (2012) A new technique for tracking the global maximum power point of PV arrays operating under partial shading conditions. IEEE Journal of Photovoltaics, 2 (2), 184-190
  50. Shah, N., & Chudamani, R., (2012) A novel algorithm for global peak power point tracking in partially shaded grid-connected PV system. IEEE International Conference on Power and Energy, Malaysia, 558-563
  51. Sobhana, G., Sornadeepika, P., & Ramaprabha, R. (2013) Global maximum power point tracking of photovoltaic array under partial shaded conditions. International Journal of Engineering Research, 2 (2), 219-223
  52. Patel, H., & Agarwal, V. (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Transactions on Industrial Electronics, 55 (4), 1689-1698
  53. Ji, Y.H., Jung, D.Y., Kim, J.G., Kim, J.H., Lee, T.W., & Won, C.Y. (2011) A real Maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Transactions on Power Electronics, 26 (4) 1001-1009
  54. Jun Qi, Zhang, Y., & Chen, Y. (2014) Modeling and maximum power point tracking (MPPT) method for PV array under partial shaded conditions. Renewable Energy, 66, 337-345
  55. Miyatake, M., Inada, T., Hiratsuka, I., Zhao, H. Otsuka, H. and Nakano, M. (2004) Control characteristics of a Fibonacci – search based maximum power point tracker when a photovoltaic array is partially shaded. 4th International Power Electronics and Motion Control Conference, Xi’an, 816-821
  56. Ahmed, N.A., and Miyatake, M. (2008) A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electric Power System Research, 78, 777-784
  57. Ramaprabha, R., Mathur, B., Ravi, A., & Aventika, S. (2010) Modified Fibonacci search based MPPT scheme for SPVA under partial shaded conditions. International Conference on Emerging Trends in Engineering and Technology, Goa, 379-384
  58. Liu, Y.H., Huang, S.C., Huang, J.W., & Liang, W.C. (2012) A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Transactions on Energy Conversion, 27 (4), 1027-1035
  59. Ishaque, K., and Islam, Z. (2013) A Deterministic particle swarm optimization maximum power point tracker for Photovoltaic system under partial shading condition. IEEE Transactions on Industrial Electronics, 60 (8) 3195-3206
  60. Lian, K.L., Jhang, J.H., & Tian, I.S. (2014) A maximum power point tracking method based on perturb – and – observe combined with particle swarm optimization, IEEE Journal of Photovoltaics, 4 (2), 626-633
  61. Sharma, P., and Agarwal, V. (2014) Exact maximum power point tracking of grid-connected partially shaded PV source using current compensation concept. IEEE Transactions on Power Electronics, 29 (9), 4684-4692
  62. Chen, C.W., Chen, K.H., & Chen, Y.M. (2014) Modeling and controller design of an autonomous PV module for DMPPT PV systems. IEEE Transactions on Power Electronics, 29 (9), 4723-4732
  63. Xiao, W., Ozog, N., & Dunford, W.G. (2007) Topology study of photovoltaic interface for maximum power point tracking. IEEE Transactions on Industrial Electronics, 54 (3), 2007
  64. Bratcu, A.I., Munteanu, I.M., Bacha, S., Picault, D., & Raison, B., (2011) Cascade DC-DC converter photovoltaic systems: power optimization issues. IEEE Transactions on Industrial Electronics, 58 (2), 403-411
  65. Villa, L.F.L., Picault, D., Raison, B., Bacha, S., & Labonne, A. (2012) Maximizing the power output of partially shaded photovoltaic plants through optimization of the interconnections among its modules. IEEE Journal of Photovoltaics, 2, (2), 154-163
  66. Modballegh, S., & Jang, J. (2014) Modeling, prediction, and experimental validations of power peaks of PV arrays under partial shading conditions. IEEE Transactions on Sustainable Energy, 5 (1) 293-300
  67. Picault, D., Raison, B., Bacha, S., Aguilera, J., & Casa, J.D.L. (2010) Changing photovoltaic array interconnections to reduce mismatch losses: a case study. 9th International Conference on Environment and Electrical Engineering, 37-40
  68. Syafaruddin, Karatepe, E., & Hiyama, T. (2009) Artificial neural network-polar coordinator fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renewable Power Generation, 3 (2), 239-253
  69. Chen K., Tian, S., Cheng, Y., & Bai, L. (2014) An improved MPPT controller for photovoltaic system under partial shading condition. IEEE Transactions on Sustainable Energy, 5 (3), 978-985

Last update:

  1. A Novel GWO-CSA Based IOT Enabled Maximum Power Point Tracking System for Operational Efficiency Enhancement of Solar Photovoltaic Energy System

    Ashish Raj, Sunil Kumar Gupta, Abdulmjeed Ali A Alshaya, Javed Khan Bhutto, Suhail Pasha Syed Basha. Proceedings of the 5th International Conference on Information Management & Machine Intelligence, 2023. doi: 10.1145/3647444.3652444
  2. MPPT Control Strategies for Photovoltaic Applications: Algorithms and Comparative Analysis

    Rabeb Abid, Sameh Mahjoub, Ferdaous Masmoudi, Nabil Derbel. 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), 2019. doi: 10.1109/SSD.2019.8893172
  3. A conceptual framework and a Review of AI-Based MPPT Techniques for Photovoltaic Systems

    J A Salim, M S Alwan, B M Albaker. Journal of Physics: Conference Series, 1963 (1), 2021. doi: 10.1088/1742-6596/1963/1/012168
  4. New Technique for Tracking the Global Peaks of PV System under Partial Shaded Conditions

    Abdalla Eltigani Ibrahim, Nursyarizal Mohd Nor, Mohd Fakhizan Romlie, Khairul Nisak Mohd Hasan. 2020 8th International Conference on Intelligent and Advanced Systems (ICIAS), 2021. doi: 10.1109/ICIAS49414.2021.9642637
  5. Estimating Effects of Individual PV Panel Failures on PV Array Output

    Michal Orkisz. IEEE Transactions on Industry Applications, 54 (5), 2018. doi: 10.1109/TIA.2018.2841818
  6. Overview and comparatif of maximum power point tracking methods of PV power system

    Fethi Messaoudi, Fethi Farhani, Abderrahmen Zaafouri. 2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC), 2021. doi: 10.1109/SCC53769.2021.9768384
  7. Future perspective and current situation of maximum power point tracking methods in thermoelectric generators

    Hayati Mamur, Mehmet Ali Üstüner, Mohammad Ruhul Amin Bhuiyan. Sustainable Energy Technologies and Assessments, 50 , 2022. doi: 10.1016/j.seta.2021.101824
  8. Performance Analysis of Different Optimization Algorithms for MPPT Control Techniques under Complex Partial Shading Conditions in PV Systems

    Nihat Pamuk. Energies, 16 (8), 2023. doi: 10.3390/en16083358
  9. Automatic Control of Solar-Powered Battery System with Maximum Power Point Tracking

    Joshua Radeen, P Sandhya. 2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS), 2024. doi: 10.1109/ICEMPS60684.2024.10559318
  10. MPPT Control Approaches for Photovoltaic Systems : Comparative Analysis

    Laarabi El oussoul, Achour Elhamdaouy, Abdessalam Ait Madi. 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2024. doi: 10.1109/IRASET60544.2024.10549691

Last update: 2025-01-20 10:31:30

  1. MPPT Control Strategies for Photovoltaic Applications: Algorithms and Comparative Analysis

    Rabeb Abid, Sameh Mahjoub, Ferdaous Masmoudi, Nabil Derbel. 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), 2019. doi: 10.1109/SSD.2019.8893172
  2. Partial Shading and Global Maximum Power Point Detections Enhancing MPPT for Photovoltaic Systems Operated in Shading Condition

    Gosumbonggot J.. Proceedings - 2018 53rd International Universities Power Engineering Conference, UPEC 2018, 2018. doi: 10.1109/UPEC.2018.8541880
  3. Solar power - A clean energy source that contributes to energy balance in Vietnam: A mini-review

    Dong V.H.. Journal of Mechanical Engineering Research and Developments, 42 (5), 2019. doi: 10.26480/jmerd.05.2019.177.181
  4. Global maximum power point tracking under shading condition and hotspot detection algorithms for photovoltaic systems

    Gosumbonggot J.. Energies, 12 (5), 2019. doi: 10.3390/en12050882
  5. Estimating Effects of Individual PV Panel Failures on PV Array Output

    Michal Orkisz. IEEE Transactions on Industry Applications, 54 (5), 2018. doi: 10.1109/TIA.2018.2841818
  6. Partial shading detection and global maximum power point tracking algorithm for photovoltaic with the variation of irradiation and temperature

    Gosumbonggot J.. Energies, 12 (2), 2019. doi: 10.3390/en12020202