Optimization of Lipid Extraction from Municipal Scum Sludge for Biodiesel Production Using Statistical Approach

DOI: https://doi.org/10.14710/ijred.6.2.171-179

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 21-03-2017
Published: 25-06-2017
Section: Articles
Fulltext PDF Tell your colleagues Email the author

Design of Experiment (DoE) as a statistical method was applied for optimizing lipid extraction conditions from scum sludge. Four different extraction variables were optimized namely methanol to hexane ratio (%), solvent to sludge ratio (ml/g), temperature (oC), and extraction time (h). Process optimization was conducted through three main steps: 1) 2k factorial screening design; 2) Steepest ascent method; and 3) Box-Behnken design and response surface method. Based on 2k factorial screening design, methanol to hexane ratio, solvent to sludge ratio and temperature were identified as highly significant variables affecting lipid extraction from scum sludge. Based on screening results, the steepest ascent method was used followed by Box-Behnken design and Response Surface Method (RSM) were then applied for optimization. The maximum extracted lipid of 29.4% (wt lipid/wt dry sludge- %) was achieved at 40% methanol to hexane ratio (%), 40 solvent to sludge ratio (ml/g), 90oC and 6 hours extraction time. The results revealed that lipid extraction increases with reducing the methanol to hexane ratio, increasing solvent to sludge ratio and increasing temperature The results demonstrated the potentiality of scum sludge for biodiesel production from scum sludge compared with the amount of lipid extracted from primary and secondary sludge reported by other studies.

Article History: Received Feb 16th 2017; Received in revised form May 5th 2017; Accepted June 4th 2017; Available online

How to Cite This Article: Ibrahim, S.N.H, and Hamza, E.A. (2017). Optimization of Lipid Extraction from Municipal Scum Sludge for Biodiesel Production Using Statistical Approach. International Journal of Renewable Energy Development, 6(2), 171-179.

https://doi.org/10.14710/ijred.6.2.171-179

Keywords

Box-Behnken design, Design of Experiment (DoE), lipid extraction, Scum sludge, response surface method (RSM)

  1. Samir Hag Ibrahim 
    1Biology Department, Faculty of Science, and Arts, Taibah University, Al-Ula, Saudi Arabia 2Department of Environmental Science and Technology, Faculty of science and technology, Al Neelian University, P.O.Box:11121, Khartoum- Sudan, Sudan

    Biology Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia

    Department of Environmental Science and Technology, Faculty of science and technology, Al Neelian University, P.O.Box:11121, Khartoum- Sudan

  2. Emad Hamza 
    Faculty of Science and Information Technology, Nyala University, N. Kordofan -Sudan, Sudan
  1. Al Saleem, S. S. A. (2007). Performance Analysis of Sanitary Wastewater Treatment Plants: Reliability-Based Analysis. King Saud University, KSA. Retrieved from http://repository.ksu.edu.sa/jspui/bitstream/123456789/8850/1/Performance analysis of sanitary wastewater treatment plants reliability-based analysis.pdf
  2. Annadurai, G., Mathalai Balan, S., & Murugesan, T. (1999). Box-Behnken design in the development of optimized complex medium for phenol degradation using Pseudomonas putida (NICM 2174). Bioprocess Engineering, 21(5), 415–421. https://doi.org/10.1007/PL00009082
  3. Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003
  4. Banković-Ilić, I. B., Stojković, I. J., Stamenković, O. S., Veljkovic, V. B., & Hung, Y. T. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32(February), 238–254. https://doi.org/10.1016/j.rser.2014.01.038
  5. Al Saleem, S. S. A. (2007). Performance Analysis of Sanitary Wastewater Treatment Plants: Reliability-Based Analysis. King Saud University, KSA. Retrieved from http://repository.ksu.edu.sa/jspui/bitstream/123456789/8850/1/Performance analysis of sanitary wastewater treatment plants reliability-based analysis.pdf
  6. Annadurai, G., Mathalai Balan, S., & Murugesan, T. (1999). Box-Behnken design in the development of optimized complex medium for phenol degradation using Pseudomonas putida (NICM 2174). Bioprocess Engineering, 21(5), 415–421. https://doi.org/10.1007/PL00009082
  7. Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003
  8. Banković-Ilić, I. B., Stojković, I. J., Stamenković, O. S., Veljkovic, V. B., & Hung, Y. T. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32(February), 238–254. https://doi.org/10.1016/j.rser.2014.01.038
  9. Bharathiraja, B., Chakravarthy, M., Kumar, R. R., Yuvaraj, D., Jayamuthunagai, J., Kumar, R. P., & Palani, S. (2014). Biodiesel production using chemical and biological methods - A review of process, catalyst, acyl acceptor, source and process variables. Renewable and Sustainable Energy Reviews, 38(October), 368–382. https://doi.org/10.1016/j.rser.2014.05.084
  10. Bharathiraja, B., Yogendran, D., Ranjith Kumar, R., Chakravarthy, M., & Palani, S. (2014). Biofuels from sewage sludge-A review. International Journal of ChemTech Research, 6(9), 974–4290.
  11. Bi, C. hao, Min, M., Nie, Y., Xie, Q. long, Lu, Q., Deng, X. yuan, Ruan, R. (2015). Process development for scum to biodiesel conversion. Bioresource Technology, 185, 185–193. https://doi.org/10.1016/j.biortech.2015.01.081
  12. Boocock, D. G. B., Konar, S. K., Leung, A., & Ly, L. D. (1992). Fuels and chemicals from sewage sludge. Fuel, 71(11), 1283–1289. https://doi.org/10.1016/0016-2361(92)90055-S
  13. Chipasa, K. B., & Mędrzycka, K. (2006). Behavior of lipids in biological wastewater treatment processes. Journal of Industrial Microbiology & Biotechnology, 33(8), 635–645. https://doi.org/10.1007/s10295-006-0099-y
  14. di Bitonto, L., Lopez, A., Mascolo, G., Mininni, G., & Pastore, C. (2016). Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel. Renewable Energy, 90, 55–61. https://doi.org/10.1016/j.renene.2015.12.049
  15. Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., & Alley, E. (2007). Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. JAOCS, Journal of the American Oil Chemists’ Society, 84(2), 181–187. https://doi.org/10.1007/s11746-006-1022-4
  16. Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., & Pandey, A. (2003). Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2), 107–115. https://doi.org/10.1016/S1369-703X(02)00192-4
  17. Imandi, S. B., Bandaru, V. V. R., Somalanka, S. R., Bandaru, S. R., & Garapati, H. R. (2008). Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresource Technology, 99(10), 4445–4450. https://doi.org/10.1016/j.biortech.2007.08.071
  18. Ingole, S. P., & Kakde, A. U. (2012). Evaluation of various plant species for biodiesel production, 3(3), 22–25.
  19. Kargbo, D. (2010). Biodiesel production from municipal sewage sludges. Energy & Fuels, 24(5), 2791–2794. https://doi.org/10.1021/ef1001106
  20. Kargbo, D. M. (2010). Biodiesel Production from Municipal Sewage Sludges. Energy & Fuels, 24(5), 2791–2794. https://doi.org/10.1021/ef1001106
  21. Kumar, M., Ghosh, P., Khosla, K., & Thakur, I. S. (2016). Biodiesel production from municipal secondary sludge. Bioresource Technology, 216(May), 165–171. https://doi.org/10.1016/j.biortech.2016.05.078
  22. Leiva-Candia, D. E., Tsakona, S., Kopsahelis, N., Garcia, I. L., Papanikolaou, S., Dorado, M. P., & Koutinas, A. A. (2014). The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Bioresource Technology, 123(March), 33–42. https://doi.org/http://dx.doi.org/10.1016/j.fuel.2014.01.054
  23. Leiva-Candia, D. E., Tsakona, S., Kopsahelis, N., Garcia, I. L., Papanikolaou, S., Dorado, M. P., & Koutinas, A. A. (2015). Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresource Technology, 190(March), 57–65. https://doi.org/10.1016/j.biortech.2015.03.114
  24. Long, C., Cui, J., Liu, Z., Liu, Y., Long, M., & Hu, Z. (2010). Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. International Journal of Hydrogen Energy, 35(13), 6657–6664. https://doi.org/10.1016/j.ijhydene.2010.04.094
  25. Mondala, A., Liang, K., Toghiani, H., Hernandez, R., & French, T. (2009a). Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technology, 100(3), 1203–1210. https://doi.org/10.1016/j.biortech.2008.08.020
  26. Mondala, A., Liang, K., Toghiani, H., Hernandez, R., & French, T. (2009b). Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technology, 100(3), 1203–1210. https://doi.org/10.1016/j.biortech.2008.08.020
  27. Olkiewicz, M. A. (2015). Production of Biodiesel From Sludge Generated in Municipal Sludge Generated in Municipal. Rovira i Virgili University. Retrieved from http://www.tesisenred.net/bitstream/handle/10803/351959/Tesis Magdalena Olkiewicz.pdf?sequence=1
  28. Olkiewicz, M., Caporgno, M. P., Fortuny, A., Stüber, F., Fabregat, A., Font, J., & Bengoa, C. (2014). Direct liquid-liquid extraction of lipid from municipal sewage sludge for biodiesel production. Fuel Processing Technology, 128, 331–338. https://doi.org/10.1016/j.fuproc.2014.07.041
  29. Olkiewicz, M., Plechkova, N. V., Fabregat, A., Stüber, F., Fortuny, A., Font, J., & Bengoa, C. (2015). Efficient extraction of lipids from primary sewage sludge using ionic liquids for biodiesel production. Separation and Purification Technology, 153, 118–125. https://doi.org/10.1016/j.seppur.2015.08.038
  30. Pastore, C., Lopez, A., Lotito, V., & Mascolo, G. (2013). Biodiesel from dewatered wastewater sludge: A two-step process for a more advantageous production. Chemosphere, 92(6), 667–673. https://doi.org/10.1016/j.chemosphere.2013.03.046
  31. Pokoo-Aikins, G., Heath, A., Mentzer, R. A., Sam Mannan, M., Rogers, W. J., & El-Halwagi, M. M. (2010). A multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel. Journal of Loss Prevention in the Process Industries, 23(3), 412–420. https://doi.org/10.1016/j.jlp.2010.01.005
  32. Qi, J., Zhu, F., Wei, X., Zhao, L., Xiong, Y., Wu, X., & Yan, F. (2015). Comparison of biodiesel production from sewage sludge obtained from the A2/O and MBR processes by in situ transesterification. Waste Management, 49, 212–220. https://doi.org/10.1016/j.wasman.2016.01.029
  33. Revellame, E., Hernandez, R., French, W., Holmes, W., & Alley, E. (2010). Biodiesel from activated sludge through in situ transesterification. Journal of Chemical Technology & Biotechnology, 85(5), 614–620. https://doi.org/10.1002/jctb.2317
  34. Revellame, E., Hernandez, R., French, W., Holmes, W., Alley, E., & Callahan, R. (2011). Production of biodiesel from wet activated sludge. Journal of Chemical Technology and Biotechnology, 86(1), 61–68. https://doi.org/10.1002/jctb.2491
  35. Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
  36. Sheik, A. R., Muller, E. E. L., & Wilmes, P. (2014). A hundred years of activated sludge: time for a rethink. Frontiers in Microbiology, 5, 47. https://doi.org/10.3389/fmicb.2014.00047
  37. Siddiquee, M. N., & Rohani, S. (2011a). Experimental analysis of lipid extraction and biodiesel production from wastewater sludge. Fuel Processing Technology, 92(12), 2241–2251. https://doi.org/10.1016/j.fuproc.2011.07.018
  38. Siddiquee, M. N., & Rohani, S. (2011b). Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renewable and Sustainable Energy Reviews, 15(2), 1067–1072. https://doi.org/10.1016/j.rser.2010.11.029
  39. Varrone, C., Giussani, B., Izzo, G., Massini, G., Marone, A., Signorini, A., & Wang, A. (2012). Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. International Journal of Hydrogen Energy, 37(21), 16479–16488. https://doi.org/10.1016/j.ijhydene.2012.02.106
  40. Wang, Y., Feng, S., Bai, X., Zhao, J., & Xia, S. (2016). Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants. Waste Management, 47, 91–97. https://doi.org/10.1016/j.wasman.2015.06.036
  41. Wiltsee, G. (1998). Waste grease resource in 30 US metropolitan areas. In The Proceedings of Bioenergy 98 Conference, Wisconsin (pp. 956–963). Retrieved from http://biodiesel.org/reports/19981001_gen-107.pdf
  42. eports/19981001_gen-107.pdf