Performance Evaluation of PV Panel Under Dusty Condition


The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust deposition
Article History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available online
How to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017). Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3), 225-233.
https://doi.org/10.14710/ijred.6.3.225-233
Article Metrics:
- Adinoyi, M. J. and Said, S. A. (2013) Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy, 60, 633–636
- Al-Hasan, A. Y. and Ghoneim, A. A. (2005) A new correlation between photovoltaic panel’s efficiency and amount of sand dust accumulated on their surface. International Journal of Sustainable Energy, 24(4), 187–197
- Bayod-Rújula, A. A., Ortego-Bielsa, A., and Martínez-Gracia, A. (2011) Photovoltaics on flat roofs: energy considerations. Energy, 36(4), 1996–2010
- Chueco-Fernández, F. J., and Bayod-Rújula, Á. A. (2010) Power supply for pumping systems in northern Chile: photovoltaics as alternative to grid extension and diesel engines. Energy, 35(7), 2909–2921
- Darwish, Z. A., Kazem, H. A., Sopian, K., Al-Goul, M. A., and Alawadhi, H. (2015). Effect of dust pollutant type on photovoltaic performance. Renewable and Sustainable Energy Reviews, 41, 735–744
- Elminir, H. K., Ghitas, A. E., Hamid, R. H., El-Hussainy, F., Beheary, M. M. and Abdel-Moneim, K. M. (2006). Effect of dust on the transparent cover of solar collectors. Energy Conversion and Management, 47(18), 3192–3203
- El-Shobokshy, M. S., Mujahid, A. and Zakzouk, A. K. M. (1985). Effects of dust on the performance of concentrator photovoltaic cells. IEE Proceedings I-Solid-State and Electron Devices, 132(1), 5–8
- El-Shobokshy, Mohammad S. and Hussein, F. M. (1993). Degradation of photovoltaic cell performance due to dust deposition on to its surface. Renewable Energy, 3(6–7), 585–590
- Goetzberger, A., Hebling C. and Schock, H.-W. (2003). Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports, 40(1), 1–46
- Hee, J. Y., Kumar, L. V., Danner, A. J., Yang, H., and Bhatia, C. S. (2012). The effect of dust on transmission and self-cleaning property of solar panels. Energy Procedia, 15, 421–427
- Jiang, H., Lu, L. and Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric Environment, 45(25), 4299–4304
- Kaldellis, J. K., and Kokala, A. (2010). Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal. Energy, 35(12), 4862–4869
- Khatib, T., Kazem, H., Sopian, K., Buttinger, F., Elmenreich, W. and Albusaidi, A. S. (2013). Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. International Journal of Renewable Energy Research (IJRER), 3(4), 850–853
- Klugmann-Radziemska, E. (2015). Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renewable Energy, 78, 418–426
- Mani, M. and Pillai, R. (2010). Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and Sustainable Energy Reviews, 14(9), 3124–3131
- Mekhilef, S., Saidur, R., and Safari, A. (2011). A review on solar energy use in industries. Renewable and Sustainable Energy Reviews, 15(4), 1777–1790
- Oliver, M., and Jackson, T. (2001). Energy and economic evaluation of building-integrated photovoltaics. Energy, 26(4), 431–439
- Rajput D. S., and Sudhakar K. (2013) Effect of dust on the performance of solar PV panel. Int J ChemTech Res, 5(2), 1083–6
- Rao, A., Pillai, R., Mani, M., and Ramamurthy, P. (2014). Influence of dust deposition on photovoltaic panel performance. Energy Procedia, 54, 690–700
- Said, S. A., and Walwil, H. M. (2014). Fundamental studies on dust fouling effects on PV module performance. Solar Energy, 107, 328–337
- Saidan, M., Albaali, A. G., Alasis E., and Kaldellis, J. K. (2016). Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renewable Energy, 92, 499–505
- Sarver, T., Al-Qaraghuli, A., and Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733
- Sulaiman, S. A., Singh, A. K., Mokhtar, M. M. M. and Bou-Rabee M. A. (2014). Influence of dirt accumulation on performance of PV panels. Energy Procedia, 50, 50–56
- Tian, W., Wang Y., Ren, J. and Zhu, L. (2007). Effect of urban climate on building integrated photovoltaics performance. Energy Conversion and Management, 48(1), 1–8
Last update: 2021-02-26 20:37:45
-
Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan
Abdul Rehman Jatoi, Saleem Raza Samo, Abdul Qayoom Jakhrani. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32352
Last update: 2021-02-26 20:37:46
-
A review on impacts from dust deposition on photovoltaic modules
Comerio A.. 2018 13th IEEE International Conference on Industry Applications, INDUSCON 2018 - Proceedings, 2019. doi: 10.1109/INDUSCON.2018.8627241 -
Performance of photovoltaic generators under superficial dust deposition on their modules derived from anthropogenic activities
Comerio A.. Acta Scientiarum - Technology, 43 , 2020. doi: 10.4025/actascitechnol.v43i1.50101 -
Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan
Abdul Rehman Jatoi, Saleem Raza Samo, Abdul Qayoom Jakhrani. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32352

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.