skip to main content

The Utilization of Water Hyacinth for Biogas Production in a Plug Flow Anaerobic Digester

1Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia

2Department of Environmental Engineering, Faculty of Civil Environmental & Geo Engineering, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia

3Department of Physics, Faculty of Natural Science, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111,, Indonesia

4 Department of Industrial Mechanical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia

View all affiliations
Received: 19 Jan 2019; Revised: 8 Aug 2020; Accepted: 11 Sep 2020; Available online: 14 Sep 2020; Published: 1 Feb 2021.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by CBIORE
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Water hyacinth (Eichhornia crassipes) causes ecological and economic problems because it grows very fast and quickly consumes nutrients and oxygen in water bodies, affecting both the flora and fauna; besides, it can form blockages in the waterways, hindering fishing and boat use. However, this plant contains bioactive compounds that can be used to produce biofuels. This study investigated the effect of various substrates as feedstock for biogas production. A 125-l plug-flow anaerobic digester was utilized and the hydraulic retention time was 14 days; cow dung was inoculated into water hyacinth at a 2:1 mass ratio over 7 days. The maximum biogas yield, achieved using a mixture of natural water hyacinth and water (NWH-W), was 0.398 l/g volatile solids (VS). The cow dung/water (CD-W), hydrothermally pretreated water hyacinth/digestate, and hydrothermally pretreated water hyacinth/water (TWH-W) mixtures reached biogas yields of 0.239, 0.2198, and 0.115 l/g VS, respectively. The NWH-W composition was 70.57% CH4, 12.26% CO2, 1.32% H2S, and 0.65% NH3. The modified Gompertz kinetic model provided data satisfactorily compatible with the experimental one to determine the biogas production from various substrates. TWH-W and NWH-W achieved, respectively, the shortest and (6.561 days) and the longest (7.281 days) lag phase, the lowest (0.133 (l/g VS)/day) and the highest (0.446 (l/g VS)/day) biogas production rate, and the maximum and (15.719 l/g VS) and minimum (4.454 l/g VS) biogas yield potential.

Fulltext View|Download
Keywords: Anaerobic digester; biogas; cow dung; hydraulic retention time; water hyacinth

Article Metrics:

  1. Abdeshahian, P., Lim, J. S., Ho, W. S., & Hashim, H. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 714-723.
  2. Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S., Sapuan, S.M. & Ishak, M.R. (2014) Mechanical properties of water hyacinth fibers-polyester composites before and after immersion in water. Materials and Design, 58, 125-129.
  3. APHA, AWWA, WPCF, (1995) Standard methods for the examination of water and wastewater, Washington D.C
  4. ASTM D 3173-87, 2003. The standard method for determination of moisture content in biomass. Philadelphia, PA: Am. Society for Testing Materials, International
  5. Ayeni, A.O., Adeeyo, O.A., Oresegun, O.M., & Oladimeji, T.E. (2015) Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass. American Journal of Engineering Research (AJER), 4(4), 14-19
  6. Ayeni, A.O., Omoleye, J.A., Mudliar, S.N., Hymore, F.K. & Pandey, R.A. (2014) Utilization of lignocellulosic Waste for Ethanol production: Enzymatic digestibility and Fermentation of Pretreated Shea Tree Sawdust. Korean Journal of Chemical Engineering. 31(7), 1180-1186.
  7. Bhattacharya, A., & Kumar, P. (2010) Water hyacinth as a potential biofuel crop. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 112-122
  8. Bouallagui, H., Ben Cheikh, R., Marouani, L. & Hamdi, M. (2003) Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology, 86(1), 85-89.
  9. Budiyono, Syaichurrozi, I. & Sumardiono, S. (2014) Kinetic Model of Biogas Yield Production from Vinasse at Various Initial pH: Comparison between Modified Gompertz Model and First Order Kinetic Model. Research Journal of Applied Sciences, Engineering, and Technology 7(13), 2798-2805.
  10. Charles, W., Walker, L., & Cord-Ruwisch, R. (2009) Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresources Technology, 100, 2329-2335.
  11. Clesceri, L.S., Eaton, A.D., & Greenberg, A.E. (1998) Standard methods for the examination of water and wastewater, 20th edition. American public health association, American water works association, Water environment federation, ISBN 0-87553-235-7
  12. Clementson, C.L., Wilson, D., & Ragobeer, P. (2016) The Bio-methane Potential of the Water Hyacinth (Eichhorniacrassipes). Greener Journal of Agricultural Sciences, 6(5), 180-185.
  13. Dasong, D., and Mizi, F. (2010). Characteristic and performance of elementary hemp fibre. Materials Sciences and Applications, 1, 336-345.
  14. Ding, T. Y., Hii, S. L. and Ong, L.G.A. (2012). Comparison of pre-treatment strategies for conversion of coconut husk fiber to fermentable sugars. Bioresources 7(2), 1540-1547.
  15. Ghali, A. E., Marzoug, I. B., Baoubab, M. H. V., & Roudesli, M. S. (2012) Separation and characterization of new cellulose fibres from juncus acutus plant. Bioresources, 7(2), 2002-2018.
  16. Ike, M., Inoue, D., Miyano, T., Liu, T.T., Sei, K., Soda, S., & Kadoshin, S. (2010). Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresources Technology, 101, 3952-3957.
  17. Kim, J.K., Nhat, L., Chun, Y.N., & Kim, S.W. (2008) Hydrogen production condition from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnology Bioprocess Eng., 13, 499-504.
  18. Kumar, M., Ou, Y.L., & Lin, J.G. (2010) Co-composting of green waste and food waste at low C/N ratio. Waste Management, 30, 602-609.
  19. Kumar, V., Singh, J., Nadeem, M., Kumar, P. & Pathak, V.V. (2018) Experimental and kinetics studies for biogas production using water hyacinth (Eichhornia crassipes [Mart.] Solms) and sugar mill effluent. Waste and Biomass Valorization, 1-11,
  20. Lin, L., Yan, R., Liu, Y., & Jiang, W. (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose, and lignin. Bioresource Technology, 101(21), 8217-8223.
  21. Lo, H.M., Kurniawan, T.A., Sillanpaa, M.E.T, Pai, T.Y. & Chiang, C.F. (2010) Modelling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresources Technology, 101, 6329-6335.
  22. Longjan, G.G., & Dehouche, Z. (2017) Biogas production potential of co-digested food waste and water hyacinth common to the Niger Delta. Biofuels, 1-11.
  23. Ludena, L., Fasce, D., Alvarez, V. A., & Stefani, P. M. (2011) Nanocellulose from rice husk following alkaline treatment to remove silica. Bioresources 6(2): 1440-1453
  24. Mata-Alvarez, J., Cecchi, F., Llabrés, P. & Pavan, P. (1999) Anaerobic Digestion of the Barcelona Central Food Market Organic Wastes. Plant Design and Feasibility Study. Bioresource Technology, 42, 33-42.
  25. Matheri, A.N., Ndiweni, S.N., Belaid, M., Muzenda, E., & Hubert, R. (2017) Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80, 756-764
  26. Mathew, A.K., Bhui, I., Banerjee, S.N., Goswami, R., Chakraborty, A.K., Shome, A., Balachandran, S., & Chaudhury, S. (2014) Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technologies and Environmental Policy, DOI 10.1007/s10098-014-0877-6.
  27. Monteiro, E., Mantha, V., & Rouboa, A. (2011) Prospective application of farm cattle manure for bioenergy production in Portugal. Renewable Energy, 36, 627-631. doi: 10.1016/j.renene.2010.08.035
  28. Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., & Dalai, A.K. (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 35, 1624-1631. doi: 10.1016/j.renene.2009.08.033.
  29. Navarro, A.R., Rubio, M.C., & Maldonado, M.C. (2012) A combined process to treat lemon industry wastewater and produce biogas. Clean Technologies Environmental Policy, 14, 41-45.
  30. Nopharatana, A., Pullammanappallil, P.C., & Clarke, W.P. (2007). Kinetics and Dynamic Modeling of Batch Anaerobic Digestion of Municipal Solid Waste in a Stirred Reactor. Waste Management, 27, 595-603.
  31. Nur Aimia, M. N., Anuara, H., Nurhafizaha, S. M. & Zakariab, S. (2015) Effects of Dilute Acid Pretreatment on Chemical and Physical Properties of Kenaf Biomass. Journal of Natural Fibers, 12, 256-264, 2015256-264. DOI: 10.1080/15440478.2014.919894.
  32. Opurum C.C., Nweke C.O., Nwanyanwu C.E. & Nwachukwu M.I. (2015) Kinetic Study on Biogas Production from Fish Pond Effluent co-digested with Cow dung in a Batch Bioreactor system. International Research Journal of Environment Sciences, 4(12), 1-7
  33. O'Sullivan, C., Rounsefell, B., Grinham, A., Clarke W., & Udy, J. (2010) Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba caroliniana) and salvinia (Salvinia molesta). Ecology Engeneering, 36, 1459-1468.
  34. Patil, J.H., Antony Raj, M.A.L., Shankar, B.B., Shetty, M.K., & Pradeep Kumar, B.P. (2014) Anaerobic Co-Digestion of Water Hyacinth and Sheep Waste. Energy Procedia, 52, 572 - 578.
  35. Patil, J.H., Raj, M.A., & Gavimath, C.C. (2011) Impact of dilution on biomethanation of fresh water hyacinth. International Journal of Chemical Sciences and Applications, 2, 86-90
  36. Patil, J.H., Raj, M.A., Muralidhara, P.L., Desai, S.M., & Raju, G.K.M. (2012) Kinetics of Anaerobic Digestion of Water Hyacinth Using Poultry Litter as Inoculum. International Journal of Environmental Science and Development, 3(2), 94-98.
  37. Pachaiyappan, S., Elamvazhuthi, P., Dhamodharan, M., & Sundaram, S. (2014) Biogas production from water hyacinth blended with cow dung. Indian Journal of Energy, 3(1), 134-139
  38. Rao, P.V., Baral, S.S., Dey, R. & Mutnuri, S. (2010) Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sust Energ Rrv 14(7), 2086-2094.
  39. Rico, C., Diego, R., Valcarce, A., & Rico, J.L. (2014) Biogas production from various typical organic wastes generated in the region of cantabria (Spain): methane yields and co-digestion tests. Smart Grid and Renewable Energy, 5: 128-136. DOI: 10.4236/sgre.2014.56012.
  40. Rozy, Rouf Ahmad Dar & Urmila Gupta Phutela (2017) Optimization of biogas production from water hyacinth (Eichhornia crassipes). Journal of Applied and Natural Science, 9 (4), 2062 -2067.
  41. Samuel, J., Gujjala Lohit Kumar, S., & Rintu, B. (2017) Kinetic Modeling of Mixed Culture Process of Anaerobic Co-digestion of Vegetable Wastes with Pistia stratiotes: A Scientific Attempt on Biomethanationy. Journal of Microbial & Biochemical Technology, 9(1), 554-566. DOI: 10.4172/1948-5948.1000341.
  42. Sharma, A., Aggarwal, N.K., Saini, A., & Yadav, A. (2016) Beyond Biocontrol: Water Hyacinth-Opportunities and Challenges. Journal of Environmental Science and Technology, 9(1), 26-48.
  43. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). Golden, CO: National Renewable Energy Laboratory; NREL Report No.: TP-510-42618. Contract No.: DE-AC36-99-G010337. Sponsored by the U.S. Department of Energy
  44. Soeprijanto (2019) Biogas Sebagai Energi Terbarukan (Biogas as Renewable Energy). Surabaya ITS Press
  45. Soeprijanto, Mawaddah, J.I., Tauchid, R.W., Fatullah, A.R. & Agustina, S. (2019) Biogas Production from Canteen Wastes Using a Vertical Anaerobic Digester. Prosiding Seminar Nasional Teknik Kimia "Kejuangan", (16-1)-(16-6)
  46. Sundari, M. T. & Ramesh, A. (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth - Eichhornia crassipes, Carbohydrate Polymers, 87, 1701- 1705.
  47. Thiripura, M. & Ramesh, A. (2012) Isolation and Charactherization of cellulose nanofibers from the equatic weed water hyacinth - Eichhornia crassipes, Journal of Carbohydrate Polymers, 87,1701-1705.
  48. Trzcinski, A.P., Ray, M.J., and Stuckey, D.C. (2010). Performance of a three-stage membrane bioprocess treating the organic fraction of municipal solid waste and evolution of its archaeal and bacterial ecology. Bioresources Technology, 101, 1652-1661.
  49. Vaidyanathan, S., Kavadia, K.M., Shroff, K, C., & Mahajant, S.P. (1985) Biogas production in batch and semicontinuous digesters using water hyacinth. Biotechnology and Bioengineering, 28, 905-908.
  50. Wei, Y., Li, X., Yu, L.,Zou, D., & Yuan, H. (2015) Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment. Bioresource Technology, 198, 431-436
  51. Yusuf, M.O.L., Debora, A., & Ogheneruona, D.E. (2011) Ambient Temperature Kinetic Assessment of Biogas Production from Co-digestion of Horse and Cow-dung. Research in Agricultural Engineering, 57, 97−104.

Last update:

  1. Investigation on Environmentally Polluted Water Hyacinth with Banana Fibre Reinforced Composite Absorption Properties

    Arivendhan Ajithram, J.T. Winowlin Jappes, Sudalai Perumal, S. Dinesh Kumar, Madhanagopal Manoharan. Materials Science Forum, 1112 , 2024. doi: 10.4028/p-uAFP0k
  2. Bioconversion of Industrial Cassava Solid Waste (Onggok) to Bioethanol Using a Saccharification and Fermentation process

    Soeprijanto Soeprijanto, Lailatul Qomariyah, Afan Hamzah, Saidah Altway. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.41332
  3. Co‐Digestion of Water Hyacinth and Duck Manure for Potential Low‐Cost Biogas Production by Rural Communities

    Julaikha Jamaluddin, Zufarzaana Zulkeflee. CLEAN – Soil, Air, Water, 51 (5), 2023. doi: 10.1002/clen.202200127
  4. Abundance and Composition of Solid Waste in the Citarum River, West Java Province

    J Zainalarifin, H Effendi, Taryono. IOP Conference Series: Earth and Environmental Science, 1266 (1), 2023. doi: 10.1088/1755-1315/1266/1/012056
  5. Biogas from aquatic plants: A bioenergetics incentive for constructed wetlands usage

    Erika Rabello Moretti, Denis Miguel Roston, Ariovaldo José da Silva, Ileana Pereda Reyes. Heliyon, 9 (2), 2023. doi: 10.1016/j.heliyon.2022.e12537
  6. Serious environmental threat water hyacinth (Eichhornia crassipes) plant natural fibress: Different extraction methods and morphological properties for polymer composite applications

    A. Ajithram, J.T Winowlin Jappes, G.K Chithra, Reena Daphne. Materials Today: Proceedings, 2023. doi: 10.1016/j.matpr.2023.03.431
  7. Enhancing biogas production from food waste and water hyacinth: effect of co-substrates and inoculum ratios

    Mohammed Kelif Ibro, Venkata Ramayya Ancha, Dejene Beyene Lemma, Markus Lenhart. Biomass Conversion and Biorefinery, 2023. doi: 10.1007/s13399-023-05193-7

Last update: 2024-06-22 07:45:21

No citation recorded.