skip to main content

Bioelectricity Generation From Single-Chamber Microbial Fuel Cells With Various Local Soil Media and Green Bean Sprouts as Nutrient

1Department of Chemistry, Faculty of Science and Mathematics, University of Jember, 68121, Indonesia

2Department of Physic, Faculty of Science and Mathematics, University of Jember,68121, Indonesia

3Department of Biology, Faculty of Science and Mathematics, University of Jember, 68121, Indonesia

Received: 8 Mar 2020; Revised: 19 Jun 2020; Accepted: 1 Jul 2020; Available online: 15 Jul 2020; Published: 15 Oct 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In this experiment, seven single-chamber microbial fuel cells (MFCs) were made and filled with various types of local agricultural soil and sediments found in irrigation channels, which were mixed with glucose and green bean sprouts mashed as nutrients for microbial survival. MFC electric power was measured every day for 35 days. Every time low electric power indicated weak microbial activity, green bean sprouts were added. The highest electric power of 118 µW (23.4 mW/m2) was observed in fuel cells filled with agricultural land planted with rice. Power density reached the range of 120–140 mW/m2, whereas the incubation time showed a maximum of 35 days. This study found that adding green bean sprouts can increase the length of the MFC cycle and strengthen the generated power up to 122 mW. 
Fulltext View|Download
Keywords: fertile soil; redox; media; microbial fuel cell; incubation

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology, 78(3), 409–418. DOI: 10.1007/s00253-007-1327-8
  2. Asai, Y., Miyahara, M., Kouzuma, A., & Watanabe, K. (2017). Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation. Bioresources and Bioprocessing, 4(1). DOI: 10.1186/s40643-017-0163-7
  3. Baranitharan, E., Khan, M. R., Prasad, D. M. R., Teo, W. F. A., Tan, G. Y. A., & Jose, R. (2015). Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess and Biosystems Engineering, 38(1), 15–24. DOI: 10.1007/s00449-014-1239-9
  4. Biffinger, J. C., Ray, R., Little, B., & Ringeisen, B. R. (2007). Diversifying biological fuel cell designs by use of nanoporous filters. Environmental Science and Technology, 41(4), 1444–1449. DOI: 10.1021/es061634u
  5. Cao, W., Luo, Q., & Shen, Ya Ling, D. Z. (2006). Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Applied Microbiology and Biotechnology, 71(2), 184–191. DOI: 10.1007/s00253-005-0131-6
  6. Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3(1). DOI: 10.1186/s40643-016-0116-6
  7. Cheng, S., Xing, D., & Logan, B. E. (2011). Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosensors and Bioelectronics, 26(5), 1913–1917. DOI: 10.1016/j.bios.2010.05.016
  8. Choudhury, P., Prasad Uday, U. S., Bandyopadhyay, T. K., Ray, R. N., & Bhunia, B. (2017). Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered, 8(5), 471–487. DOI: 10.1080/21655979.2016.1267883
  9. Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. DOI: 10.1016/j.biotechadv.2007.05.004
  10. Fosso-kankeu, E., Marx, S., Waanders, F., & Jacobs, V. (2015). Impact of soil type on electricity generation from a Microbial Fuel Cell. DOI: 10.15242/iie.e1115020
  11. Goto, Y., & Yoshida, N. (2016). Preliminary evaluation of a microbial fuel cell treating artificial dialysis wastewater using graphene oxide. AIP Conference Proceedings, 1709(February). DOI: 10.1063/1.4941206
  12. He, W., Zhang, X., Liu, J., Zhu, X., Feng, Y., & Logan, B. E. (2016). Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environmental Science: Water Research and Technology, 2(1), 186–195. DOI: 10.1039/c5ew00223k
  13. Helder, M., Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2012). The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels, 5. DOI: 10.1186/1754-6834-5-70
  14. Kadivarian, M., & Karamzadeh, M. (2020). Electrochemical modeling of microbial fuel cells performance at different operating and structural conditions. Bioprocess and Biosystems Engineering, 43(3), 393–401. DOI: 10.1007/s00449-019-02235-1
  15. Kim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13), 2568–2577. DOI: 10.1016/j.biortech.2006.09.036
  16. Koók, L., Nemestóthy, N., Bélafi-Bakó, K., & Bakonyi, P. (2020). Investigating the specific role of external load on the performance versus stability trade-off in microbial fuel cells. Bioresource Technology, 309(March). DOI: 10.1016/j.biortech.2020.123313
  17. Liu, K. S. (2008). Food Use of Whole Soybeans. Soybeans: Chemistry, Production, Processing, and Utilization, 441–481. DOI: 10.1016/B978-1-893997-64-6.50017-2
  18. Liu, Z., Liu, J., Zhang, S., & Su, Z. (2009). Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochemical Engineering Journal, 45(3), 185–191. DOI: 10.1016/j.bej.2009.03.011
  19. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. DOI: 10.1021/es0605016
  20. Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39(5), 942–952. DOI: 10.1016/j.watres.2004.11.019
  21. Logan, B. E., & Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095), 686–690. DOI: 10.1126/science.1217412
  22. Logan, B. E., Wallack, M. J., Kim, K. Y., He, W., Feng, Y., & Saikaly, P. E. (2015). Assessment of Microbial Fuel Cell Configurations and Power Densities. Environmental Science and Technology Letters, 2(8), 206–214. DOI: 10.1021/acs.estlett.5b00180
  23. Marashi, S. K. F., & Kariminia, H. R. (2015). Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. Journal of Environmental Health Science and Engineering, 13(1), 1–6. DOI: 10.1186/s40201-015-0179-x
  24. Min, B., & Logan, B. (2004). C on t inuou s E l e c t r ici t y G e n e r a t ion f r o m D o m e st ic W a st ewa t e r a nd O r g a nic S ub st r a t e s in a F l a t P l a t e M ic r obi a l F u e l C e llfile:///Users/aman/Downloads/apa.csl. Environ. Sci. Technol., 38(21), 5809–5814. DOI: 10.1021/es0491026
  25. Misto, Mulyono, T., Cahyono, B. E., & Zain, T. (2019). Determining sugar content in sugarcane plants using LED spectrophotometer. AIP Conference Proceedings, 2202(December). DOI: 10.1063/1.5141738
  26. Ömeroğlu, S., & Sanin, F. D. (2016). Bioelectricity Generation From Wastewater Sludge Using Microbial Fuel Cells: A Critical Review. Clean - Soil, Air, Water, 44(9), 1225–1233. DOI: 10.1002/clen.201500829
  27. Pant, D., Van Bogaert, G., Porto-Carrero, C., Diels, L., & Vanbroekhoven, K. (2011). Anode and cathode materials characterization for a microbial fuel cell in half cell configuration. Water Science and Technology, 63(10), 2457–2461. DOI: 10.2166/wst.2011.217
  28. Park, D. O. O. H. (2000). Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore Downloaded from http://aem.asm.org/ on September 27 , 2017 by INDIAN INST OF TECHNOLOGY Kharagpur. Applied Environmental Microbiology, 66(4), 1292–1297. DOI: 10.1128/AEM.66.4.1292-1297.2000
  29. Parkash, A. (2016). Microbial Fuel Cells: A Source of Bioenergy. Journal of Microbial & Biochemical Technology, 8(3), 247–255. DOI: 10.4172/1948-5948.1000293
  30. Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A MFC capable of converting glucose to electricity at high rate and efficeincy.pdf. Biotechnology Letter, 25, 1531–1535
  31. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. DOI: 10.1016/j.tibtech.2005.04.008
  32. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technol ogy for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756. DOI: 10.1016/j.aej.2015.03.031
  33. Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Alston, M., Stringer, M. F., Betts, R. P., Baranyi, J., Peck, M. W., & Hinton, J. C. D. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of Bacteriology, 194(3), 686–701. DOI: 10.1128/JB.06112-11
  34. Shaheen Aziz, A. P. (2015). Utilization of Sewage Sludge for Production of Electricity using Mediated Salt Bridge Based Dual Chamber Microbial Fuel Cell. Journal of Bioprocessing & Biotechniques, 05(08). DOI: 10.4172/2155-9821.1000251
  35. Song, H. L., Zhu, Y., & Li, J. (2019). Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells – A mini review. Arabian Journal of Chemistry, 12(8), 2236–2243. DOI: 10.1016/j.arabjc.2015.01.008
  36. Sultana, S. T., Babauta, J. T., & Beyenal, H. (2015). Electrochemical biofilm control: A review. Biofouling, 31(9), 745–758. DOI: 10.1080/08927014.2015.1105222
  37. Tharali, A. D., Sain, N., & Osborne, W. J. (2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9(4), 252–266. DOI: 10.1080/21553769.2016.1230787
  38. Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. DOI: 10.1002/jpln.201600451
  39. Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. Frontiers in Microbiology, 8(APR), 1–14. DOI: 10.3389/fmicb.2017.00643
  40. Wrighton, K. C., Virdis, B., Clauwaert, P., Read, S. T., Daly, R. A., Boon, N., Piceno, Y., Andersen, G. L., Coates, J. D., & Rabaey, K. (2010). Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME Journal, 4(11), 1443–1455. DOI: 10.1038/ismej.2010.66
  41. Xia, C., Xu, M., Liu, J., Guo, J., & Yang, Y. (2017). Corrigendum to “Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity” (Bioresour Technol. 190 (2015) 420–423) (S0960852415005799) (10.1016/j.biortech.2015.04.072). Bioresource Technology, 226, 272. DOI: 10.1016/j.biortech.2016.12.066
  42. Xu, L., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2016). The integrated processes for wastewater treatment based on the principle of microbial fuel cells: A review. Critical Reviews in Environmental Science and Technology, 46(1), 60–91. DOI: 10.1080/10643389.2015.1061884
  43. Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. DOI: 10.1016/j.egyr.2019.08.007
  44. Zaidi, S. M. J., & Rauf, M. A. (2009). Fuel cell fundamentals. In Polymer Membranes for Fuel Cells. DOI: 10.1007/978-0-387-73532-0_1
  45. Zhang, E., Liu, L., & Cui, Y. (2013). Effect of pH on the performance of the anode in microbial fuel cells. Advanced Materials Research, 608–609, 884–888. DOI: 10.4028/www.scientific.net/AMR.608-609.884
  46. Zhang, T., Zeng, Y., Chen, S., Ai, X., & Yang, H. (2007). Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochemistry Communications, 9(3), 349–353. DOI: 10.1016/j.elecom.2006.09.025

Last update:

  1. A New Method of Bio-Catalytic Surface Modification for Microbial Desalination Cell

    Ummy Mardiana, Christophe Innocent, Marc Cretin, Buchari Buchari. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34235
  2. Current Research Trends and Applications in Waste Management

    A. S. Zarena. 2023. doi: 10.1007/978-981-99-3106-4_9
  3. The impact of adding vegetable waste on the functioning of microbial fuel cell

    Tri Mulyono, Misto, Bowo Eko Cahyono, Nanda Hilda Fahmidia. THE 3RD INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS (ICPIAM) 2021, 2663 , 2022. doi: 10.1063/5.0108950

Last update: 2024-03-28 21:01:25

  1. A New Method of Bio-Catalytic Surface Modification for Microbial Desalination Cell

    Ummy Mardiana, Christophe Innocent, Marc Cretin, Buchari Buchari. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34235