Evaluating the materials used for hydrogen production based on photoelectrochemical technology

Mohammdreza Nazemzadegan -  Department of Renewable Energies and Environmental, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran, Islamic Republic of
*Roghayeh Ghasempour -  Department of Renewable Energies and Environmental, Faculty of New Sciences and Technologies, University of Tehran, Tehran,, Iran, Islamic Republic of
Received: 12 Feb 2019; Revised: 18 Apr 2019; Accepted: 25 Apr 2019; Published: 13 Jun 2019; Available online: 15 Jul 2019.
Open Access Copyright (c) 2019 International Journal of Renewable Energy Development
Citation Format:
Cover Image
Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 122 101
Abstract

Hydrogen as a CO2-free fuel has been considered as a serious alternative for problematic fossil fuels in recent decades Photoelectrochemical (PEC) water splitting is a developing solar-based technology for hydrogen production. In this study, some possible options for upgrading this technology from R&D stage to prototype stage through a material selection approach is investigated. For these purpose, TOPSIS algorithm through a multi criteria decision making (MCDM) approach was utilized for evaluating different (PEC)-based hydrogen production materials. TiO2, WO3 and BiVO4 as three semiconductors known for their PEC application, were selected as alternatives in this decision-making study. After defining a set of criteria, which were assessed based on similar studies and experts' visions, a group of ten PEC-experts including university professors and PhD students were asked to fill the questionnaires. The eight criteria considered in this study are include "Study Cost", "Synthesis Simplicity", "Facility & Availability", "Deposition capability on TCO", "Modifiability", "Commercialization in H2 production", "Physical and Chemical Durability" and "Eco-friendly Fabrication". The final TOPSIS results indicates that TiO2 is selected as the best semiconductor for further investments in order to upgrade the PEC-based hydrogen production technology from R&D level to prototype stage. ©2019. CBIORE-IJRED. All rights reserved

Keywords
MCDM; TOPSIS; Hydrogen generation; PEC; Semiconductor

Article Metrics:

  1. Abe, R. (2010). Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 179-209. https://doi.org/10.1016/j.jphotochemrev.2011.02.003
  2. Acar, C., & Dincer, I. (2016). A review and evaluation of photoelectrode coating materials and methods for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 41(19), 7950–7959. https://doi.org/10.1016/j.ijhydene.2015.11.160
  3. Ahmadi, M. H., Alhuyi Nazari, M., Sadeghzadeh, M., Pourfayaz, F., Ghazvini, M., Ming, T., ... & Sharifpur, M. (2018a). Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: A review. Energy Science & Engineering. https://doi.org/10.1002/ese3.223
  4. Ahmadi, M. H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M., Kumar, R., Naeimi, A., & Ming, T. (2018b). Solar power technology for electricity generation: A critical review. Energy Science & Engineering, 6(5), 340-361. https://doi.org/10.1002/ese3.239
  5. Ahmadi, M. H., Ramezanizadeh, M., Nazari, M. A., Lorenzini, G., Kumar, R., & Jilte, R. (2018c). Applications of nanofluids in geothermal: A review. Mathematical Modelling of Engineering Problems. 5(4), 281-285. https://doi.org/10.18280/mmep.050402
  6. Ahmadi, M. H., Banihashem, S. A., Ghazvini, M., & Sadeghzadeh, M. (2018d). Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy. Energy & Environment, 29(8), 1373-1392. https://doi.org/10.1177/0958305X18779573
  7. Ali, H., Ismail, N., Amin, M. S., & Mekewi, M. (2018). Decoration of vertically aligned TiO 2 nanotube arrays with WO 3 particles for hydrogen fuel production. Frontiers in Energy, 1-10. https://doi.org/10.1007/s11708-018-0547-1
  8. Amekan, Y., Wangi, P., Ayu, D. S., Cahyanto, M. N., & Widada, J. (2018). Effect of Different Inoculum Combination on Biohydrogen Production from Melon Fruit Waste. International Journal of Renewable Energy Development, 7(2). http:// doi.org/10.14710/ijred.7.2.101-109
  9. Bp, G. (2018). Bp Statistical Review of World Energy. 2018. https://www. bp. com/en/global/corporate/energy-economics/statistical-review-of-world-energy. html (accessed on 4 September 2018). Sustainability, 10(3195), 17.
  10. Chang, P. L., & Chen, Y. C. (1994). A fuzzy multi-criteria decision making method for technology transfer strategy selection in biotechnology. Fuzzy Sets and Systems, 63(2), 131-139. https://doi.org/10.1016/0165-0114(94)90344-1
  11. Chen, X., Xiong, J., Shi, J., Xia, S., Gui, S., & Shangguan, W. (2018). Roles of various Ni species on TiO 2 in enhancing photocatalytic H 2 evolution. Frontiers in Energy, 1-7. http:// doi.org/10.1007/s11708-018-0585-8
  12. Chen, X., & Shangguan, W. (2013). Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Frontiers in Energy, 7(1), 111-118. http:// doi.org/10.1007/s11708-012-0228-4
  13. Daghrir, R., Drogui, P., & Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 52(10), 3581-3599. http:// doi.org/10.1021/ie303468t
  14. Dehghani Madvar, M., Alhuyi Nazari, M., Tabe Arjmand, J., Aslani, A., Ghasempour, R., & Ahmadi, M. H. (2018). Analysis of stakeholder roles and the challenges of solar energy utilization in Iran. International Journal of Low-Carbon Technologies, 13(4), 438-451. https://doi.org/10.1093/ijlct/cty044
  15. Eilat, H., Golany, B., & Shtub, A. (2008). R&D project evaluation: An integrated DEA and balanced scorecard approach. Omega, 36(5), 895-912. https://doi.org/10.1016/j.omega.2006.05.002
  16. El Amine, M., Pailhes, J., & Perry, N. (2014). Comparison of different Multiple-criteria decision analysis methods in the context of conceptual design: application to the development of a solar collector structure. Proceedings of Joint Conference on Mechanical, Design Engineering, Advanced Manufacturing, Toulouse, France„ Jun 2014, France. pp.1-6. ffhal-00987264
  17. Ghasempour, R., Nazari, M. A., Ebrahimi, M., Ahmadi, M. H., & Hadiyanto, H. (2017). MCDM Approach for Selecting Solar Plants Site and Technology: A Review. International Journal of Renewable Energy Development, 8(1), 15-25.
  18. Ghoujdi, I. E., Hadiannasab, H., Bidi, M., Naeimi, A., Ahmadi, M. H., Nazari, M. A., & Ming, T. (2018). Multiobjective optimization design of the solar field and reverse osmosis system with preheating feed water using Genetic algorithm. Energy Science & Engineering, 6(6), 624-642. https://doi.org/10.1002/ese3.237
  19. Haghighi Bardineh, Y., Mohamadian, F., Ahmadi, M. H., & Akbarianrad, N. (2018). Medical and dental applications of renewable energy systems. International Journal of Low-Carbon Technologies, 13(4), 320-326. https://doi.org/10.1093/ijlct/cty040
  20. Handayani, N. A., & Ariyanti, D. (2012). Potency of solar energy applications in Indonesia. International Journal of Renewable Energy Development, 1(2), 33-38. https://doi.org/10.14710/ijred.1.2.33-38
  21. IRENA (2018), Hydrogen from renewable power: Technology outlook for the energy transition, International Renewable Energy Agency, Abu Dhabi.
  22. Junior, F. R. L., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21, 194-209.
  23. Kaloi, G. S., Wang, J., Baloch, M. H., & Tahir, S. (2017). Wind Energy Potential at Badin and Pasni Costal Line of Pakistan. International Journal of Renewable Energy Development, 6(2). https://doi.org/10.14710/ijred.6.2.103-110
  24. Kanoglu, M., Yilmaz, C., & Abusoglu, A. (2016). Geothermal Energy Use in Hydrogen Production. Journal of Thermal Engineering, 2(2), 699-708. http://doi.org/10.18186/jte.58324
  25. Khouja, M. (1995). The use of data envelopment analysis for technology selection. Computers & Industrial Engineering, 28(1), 123-132. https://doi.org/10.1016/0360-8352(94)00032-I
  26. Liu, S., Yu, J., & Jaroniec, M. (2011). Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chemistry of Materials, 23(18), 4085-4093. https://doi.org/10.1021/cm200597m
  27. Madhusudan, P., Kumar, M. V., Ishigaki, T., Toda, K., Uematsu, K., & Sato, M. (2013). Hydrothermal synthesis of meso/macroporous BiVO 4 hierarchical particles and their photocatalytic degradation properties under visible light irradiation. Environmental Science and Pollution Research, 20(9), 6638-6645. https://doi.org/10.1007/s11356-013-1694-x
  28. Menges, R., & Pfaffenberger, W. (2015). Promotion of Renewable Energy Sources in the European Union. International Journal of Renewable Energy Development, 4(3). http://doi.org/10.14710/ijred.4.3.171-180
  29. Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of photochemistry and photobiology A: Chemistry, 108(1), 1-35. https://doi.org/10.1016/S1010-6030(97)00118-4
  30. Moniz, S. J., Shevlin, S. A., Martin, D. J., Guo, Z. X., & Tang, J. (2015). Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy & Environmental Science, 8(3), 731-759. https://doi.org/10.1039/C4EE03271C
  31. Muppala, S., Manickam, B., & Dinkelacker, F. (2015). A Comparative Study of Different Reaction Models for Turbulent Methane/Hydrogen/Air Combustion. Journal of Thermal Engineering, 1(5), 367-380. http:// doi.org/10.18186/jte.60394
  32. Nazari, M. A., Aslani, A., & Ghasempour, R. (2018). Analysis of solar farm site selection based on TOPSIS approach. International Journal of Social Ecology and Sustainable Development (IJSESD), 9(1), 12-25. http:// doi.org/10.4018/IJSESD.2018010102
  33. Nazemzadegan, M. R., Kasaeian, A., Toghyani, S., Ahmadi, M. H., Saidur, R., & Ming, T. (2017). Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm. Frontiers in Energy, 1-17. https://doi.org/10.1007/s11708-018-0548-0
  34. Ni, M., Leung, M. K., Leung, D. Y., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. https://doi.org/10.1016/j.rser.2005.01.009
  35. Poh, K. L., Ang, B. W., & Bai, F. (2001). A comparative analysis of R&D project evaluation methods. R&D Management, 31(1), 63-75. https://doi.org/10.1111/1467-9310.00197
  36. Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Açıkkalp, E. (2018a). Application of nanofluids in thermosyphons: A review. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2018.09.101
  37. Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., Lorenzini, G., Kumar, R., & Jilte, R. (2018b). A review on the solar applications of thermosyphons. Mathematical Modelling of Engineering Problems. 5(4), 275-280. https://doi.org/10.18280/mmep.050401
  38. Talukdar, K. (2017). Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata, India. International Journal of Renewable Energy Development, 6(2), 181. http:// doi.org/10.14710/ijred.6.2.181-191
  39. Tscheikner-Gratl, F., Egger, P., Rauch, W., & Kleidorfer, M. (2017). Comparison of multi-criteria decision support methods for integrated rehabilitation prioritization. Water, 9(2), 68. https://doi.org/10.3390/w9020068
  40. U.S. Department of Energy [DOE]. (2018). DOE 2020 Targets by Application, EERE, FCTO, Fuel Cells Program Area, 2017 Annual Merit Review and Peer Evaluation Meeting. https://www.hydrogen.energy.gov/annual_review17_report.html. (June 5-9 2017), 1–5.
  41. U.S. Department of Energy [DOE]. (2015). DOE Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan, chapter (3) Hydrogen Production, 11007, 1–44.
  42. U.S. Department of Energy [DOE]. (2018). DOE Technical Targets for Hydrogen Production from Photoelectrochemical Water Splitting. https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-photoelectrochemical-water-splitting. 1–6.
  43. Vafaeipour, M., Zolfani, S. H., Varzandeh, M. H. M., Derakhti, A., & Eshkalag, M. K. (2014). Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach. Energy Conversion and Management, 86, 653-663. https://doi.org/10.1016/j.enconman.2014.05.083
  44. Venkatesan, R., Velumani, S., & Kassiba, A. (2012). Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Materials Chemistry and Physics, 135(2-3), 842-848. https://doi.org/10.1016/j.matchemphys.2012.05.068
  45. Victório, C. J. M., Costa, H. G., & Souza, C. G. D. (2015). Modeling selection criteria of R&D projects for awarding direct subsidies to the private sector. Science and Public Policy, 43(2), 275-287. https://doi.org/10.1093/scipol/scu088
  46. Wang, S. H., Chang, S. P., Williams, P., Koo, B., & Qu, Y. R. (2015). Using Balanced Scorecard for Sustainable Design-centered Manufacturing. Procedia Manufacturing, 1, 181-192. https://doi.org/10.1016/j.promfg.2015.09.084
  47. Wang, W. P., & Tang, M. C. (2015). A multi-criteria assessment for R&D innovation with fuzzy computing with words. In Modelling, Computation and Optimization in Information Systems and Management Sciences (pp. 3-14). Springer, Cham. https://doi.org/10.1007/978-3-319-18167-7_1
  48. Watson, J. J., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20-31. https://doi.org/10.1016/j.landurbplan.2015.02.001
  49. Xia, D., Yu, Q., Gao, Q., & Cheng, G. (2017). Sustainable technology selection decision-making model for enterprise in supply chain: Based on a modified strategic balanced scorecard. Journal of cleaner production, 141, 1337-1348. https://doi.org/10.1016/j.jclepro.2016.09.083
  50. Yourey, J. E. (2014). Photoelectrochemical and Photocatalytic Water Oxidation using Metal Oxides. PhD thesis, University of Michigan.
  51. Zaleska, A. (2008). Doped-TiO2: a review. Recent patents on engineering, 2(3), 157-164. https://doi.org/10.2174/187221208786306289
  52. Zhao, H., & Li, N. (2015). Evaluating the performance of thermal power enterprises using sustainability balanced scorecard, fuzzy Delphic and hybrid multi-criteria decision making approaches for sustainability. Journal of Cleaner Production, 108, 569-582. https://doi.org/10.1016/j.jclepro.2015.07.141