Copper and Lead Ions Removal by Electrocoagulation: Process Performance and Implications for Energy Consumption

*Aji Prasetyaningrum scopus  -  Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
Dessy Ariyanti orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
Widayat Widayat orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
Bakti Jos scopus  -  Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
Received: 16 Jul 2020; Revised: 15 Dec 2020; Accepted: 20 Jan 2021; Published: 1 Aug 2021; Available online: 17 Feb 2021.
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Electroplating wastewater contains high amount of heavy metals that can cause serious problems to humans and the environment. Therefore, it is necessary to remove heavy metals from electroplating wastewater. The aim of this research was to examine the electrocoagulation (EC) process for removing the copper (Cu) and lead (Pb) ions from wastewater using aluminum electrodes. It also analyzes the removal efficiency and energy requirement rate of the EC method for heavy metals removal from wastewater. Regarding this matter, the operational parameters of the EC process were varied, including time (20−40 min), current density (40−80 A/m2), pH (3−11), and initial concentration of heavy metals. The concentration of heavy metals ions was analyzed using the atomic absorption spectroscopy (AAS) method. The results showed that the concentration of lead and copper ions decreased with the increase in EC time. The current density was observed as a notable parameter. High current density has an effect on increasing energy consumption. On the other hand, the performance of the electrocoagulation process decreased at low pH. The higher initial concentration of heavy metals resulted in higher removal efficiency than the lower concentration. The removal efficiency of copper and lead ions was 89.88% and 98.76%, respectively, at 40 min with electrocoagulation treatment of 80 A/m2 current density and pH 9. At this condition, the specific amounts of dissolved electrodes were 0.2201 kg/m3, and the energy consumption was 21.6 kWh/m3. The kinetic study showed that the removal of the ions follows the first-order model.
Keywords: Heavy metals; electrocoagulation; energy consumption; kinetics; sludge characterization
Funding: Universitas Diponegoro

Article Metrics:

  1. Abrahamsen, E.B., Asche, F., Milazzo, M.,F. (2013). An evaluation of the effects on safety of using safety standards in major hazard industries. Safety Science, 59, 173-178; doi: 10.1016/j.ssci.2013.05.011
  2. Adhoum, N., Monser, L., Bellakhal, N., Belgaied, J.E. (2004). Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr6+ by electrocoagulation, J. Hazard. Mater. 112 (3), 207–213; doi: 10.1016/j.jhazmat.2004.04.018
  3. Agridiotis, V., Forster, C.F., Carliell-Marquet, C. (2007). Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics, Bioresour. Technol. 98, 2926–2934. doi: 10.1016/j.biortech.2006.10.004
  4. Akbal, F., & Camcı, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269, 214–222. doi: 10.1016/j.desal.2010.11.001
  5. Al-Aji, B., Yavuz, Y., Koparal, A. S. (2012). Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes, Separation and Purification Technology. 86, 248-254. doi: 10.1016/j.seppur.2011.11.011
  6. Al-Shannag, M., K. Bani-Melhem, K., Al-Anber, Z., Al-Qodah, Z. (2013). Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Sep. Sci. Technol. 48, 673–680. doi: 10.1080/01496395.2012.707729
  7. Al-Shannag, M., Lafi, W., Bani-Melhem, K., Gharagheer, F., Dhaimat, O. (2012). Reduction of COD and TSS from paper industries wastewater using electrocoagulation and chemical coagulation, Sep. Sci. Technol. 47, 700–708. doi: 10.1080/01496395.2011.634474
  8. Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chemical Engineering Journal. 260, 749–756. doi: 10.1016/j.cej.2014.09.035
  9. Basha, C.A., Bhadrinarayana, N.S., Anantharaman, N., & Begum, K.M. (2008). Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor, J. Hazard. Mater. 152, 71–78. doi: 10.1016/j.jhazmat.2007.06.069
  10. Beyazit, N. (2014). Copper(II), Chromium(VI) and Nickel (II) Removal from metal plating effluent by electrocoagulation, Int. J. Electrochem. Sci. 9, 4315–4330. doi: 10.1016/j.desal.2007.03.020
  11. Cañizares, P., Martínez, F., Jiménez, Sáez, C., Manuel, A. R. (2009). Technical and economic comparison of conventional and electrochemical coagulation processes, J. Chem Technology and Biotechnology. 84, 702-710. doi: 10.1002/jctb.2102
  12. Chen, X., Ren, P., Li, T., Jason, P., Liu, X. (2018). Zinc removal from model wastewater by electrocoagulation: Processing, kinetics, and mechanism. Chemical Engineering Journal. 349, 358-367; doi: 10.1016/j.cej.2018.05.099
  13. Chen, G. Electrochemical technologies in wastewater treatment. (2004). Sep. Purif. Technol. 38, 11–41. doi: 10.1016/j.seppur.2003.10.006
  14. Clark, T., & Stephenson, T. (1998). Effects of chemical addition on aerobic biological treatment of municipal wastewater, Environ. Technol. 19, 579–590. doi: 10.1080/09593331908616714
  15. Cotillas, S., Canizares, P., Martin De Vidales, M.J., Saez, C., Rodrigo, M., Llanos, J. (2014). Electrocoagulation-UV-irradiation process for urban wastewater reuse. Chemical Engineering Transactions. 41, 133-138; doi: 10.3303/CET1441023
  16. Dermentzis, K., Stergiopoulos, D., Giannakoudakis, P., Moumtzakis, A. (2016). Removal of copper and COD from electroplating effluents by photovoltaic electrocoagulation / electrooxidation process, Water Utility Journal.14, 55-62
  17. Fabiano, B., Currò, F., A.P. Reverberi, A.P., E. Palazzi, E. (2014). Coal dust emissions: from environmental control to risk minimization by underground transport. An applicative case-study. Process Safety and Environmental Protection 92(4), 150-159; doi: 10.1016/j.psep.2013.01.002
  18. Gurses, A., Yalcin, M., Dogan, C. (2002). Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables, Waste Manage. 22, 491–499. doi: 10.1016/S0956-053X(02)00015-6
  19. Heidmann, I., & Calmano, W. (2008). Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminum electrocoagulation, J. Hazard. Mater. 152, 934–941. doi: 10.1016/j.jhazmat.2007.07.068
  20. Hunsom, M., Pruksathorn, K., Damronglerd, S., Vergnes, H., Duverneuil, P. (2005). Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res, 39 (4), 610–616. doi: 10.1016/j.watres.2004.10.011
  21. Holt, P.K., Barton, G.W., Wark, M., Mitchell, C.A. (2002). A quantitative comparison between chemical dosing and electrocoagulation, Colloids Surf. A, 211, 233–248; doi: 10.1016/S0927-7757(02)00285-6
  22. Hossain, M. M., Mahmud, M. I., Parvez, M. S., Cho, H. M. (2013). Impact of current density, operating time and pH of textile wastewater treatment by electrocoagulation process, Environ. Eng. Res. 18 (3), 157-161. doi: 10.4491/eer.2013.18.3.157
  23. Khansorthong, S., Hunsom, M. (2009). Remediation of wastewater from pulp and paper mill industry by the electrochemical technique, Chem. Eng. J. 151, 228–234. doi: 10.1016/j.cej.2009.02.038
  24. Kim, D.G., Palacios, R.J.S., Ko, S.O. (2014). Characterization of sludge generated by electrocoagulation for the removal of heavy metals, Desalination and Water Treatment. 52 (2014) 909–919. doi: 10.1080/19443994.2013.826776
  25. Kongsricharoern, N., & Polprasert, C. (1995). Electrochemical precipitation of chromium (Cr6+) from an electroplating waste-water. Water Sci. Technol. 31 (9), 109–117; doi: 10.1016/0273-1223(95)00412-G
  26. Kobya, M., Hiz, H., Senturk, E., Aydiner, C., Demirbas, E. (2006). Treatment of potato chips manufacturing wastewater by electrocoagulation, Desalination. 190, 201–211. doi: 10.1016/j.desal.2005.10.006
  27. Kobya, M., & Delipinar, S. (2008). Treatment of the baker’s yeast wastewater by electrocoagulation, J. Hazard. Mater. 154, 1133–1140. doi: 10.1016/j.jhazmat.2007.11.019
  28. Martınez-Huitle, C.A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal. B 87, 105–145. doi: 10.1016/j.apcatb.2008.09.017
  29. Mollah, M.Y.A., Schennach, R., Parga, J.R., Cocke, D.L. (2001). Electrocoagulation (EC)-science and applications. J. Hazard. Mater. 84, 29–41. doi: 10.1016/S0304-3894(01)00176-5
  30. Moussa, D. T., El-Naas, M. H., Nasser, M., Al-Marri, M. J. (2017). A Comprehensive Review of Electrocoagulation for Water Treatment: Potentials and Challenges. Journal of environmental management, 186, 24–41. doi: 10.1016/j.jenvman.2016.10.032
  31. Nasrullah, M., Lakhveer, S., Wahid, Z. A. (2012). Treatment of sewage by electrocoagulation and the effect of high current density, Energy and Environmental Engineering Journal. 1 (1), 27-31. doi: 10.14233/ajchem.2014.16134
  32. Pulkka, S., Martikainen, M., Bhatnagar, A., Sillanpää, M. (2014). Electrochemical methods for the removal of anionic contaminants from water–A review. Separation and Purification Technology. 132, 252–271. doi: 10.1016/j.seppur.2014.05.021
  33. Reverberi, A.P., Maga,L., Cerrato, C., Fabiano, B. (2014). Membrane processes for water recovery and decontamination. Current Opinion in Chemical Engineering, 6, 75-82. doi: 10.1016/j.coche.2014.10.004
  34. Tchobanoglous, G., Burton, F.L., Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse, Fourth ed., McGraw Hill, Boston
  35. Un, U.T., Ug˘ur, S., Koparal, A.S., Og˘utveren, U.B. (2006). Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol. 52, 136–141. doi: 10.1016/j.seppur.2006.03.029
  36. Vasudevan, S., Lakshmi, J., Sozhan, G. (2009). Studies on the removal of iron from drinking water by electrocoagulation – A clean process, Clean-Soil, Air, Water. 37, 45-51. doi: 10.1002/clen.200800175
  37. Wang, Y., Hu, H., Sun, Y., Tang, Y., Dai, L., Hu, Q., Fisher, A., Yang, X.J. (2018). Advanced Materials Interfaces. 1801200, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. doi: 10.1002/admi.201801200
  38. Whang, H.S., Lim, J., Choi, M. S., Lee, J., and Lee, H. Review-Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. (2019). BMC Chemical Engineering, doi: 10.1186/s42480-019-0007-7
  39. Xi, Y., Luo, Y., Luo, X. (2015). Removal of Cadmium (II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers, Journal of Chemical & Engineering Data. 60, 3253–3261. doi: 10.1021/acs.jced.5b00494
  40. Yılmaz, A. E., Boncukcuoğlu, R., Kocaker, M. M., Kocadağistan, E. (2008). An empirical model for kinetics of boron removal from boron containing wastewaters by the electrocoagulation method in a batch reactor, Desalination. 230,288–297. doi: 10.1016/j.desal.2007.11.031
  41. Zhu, B., Clifford, D.A., Chellam, S. (2005). Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes, Water Res. 39, 3098–3108. doi: 10.1016/j.watres.2005.05.020
  42. Zaroual, Z., Azzi, M., Saib, N., Chaînet, E. (2006). Contribution to the study of electrocoagulation mechanism in basic textile effluent, Journal of Hazardous Materials. 131(1-3) 73–78. doi: 10.1016/j.jhazmat.2005.09.021

Last update: 2021-02-26 01:20:19

No citation recorded.

Last update: 2021-02-26 01:20:22

No citation recorded.