Pretreatment of Oil Palm Empty Fruit Bunch (OPEFB) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification

*Fahriya Puspita Sari orcid scopus  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Faizatul Falah scopus  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Sita Heris Anita orcid scopus  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Kharisma Panji Ramadhan orcid  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Raden Permana Budi Laksana orcid scopus  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Widya Fatriasari orcid scopus  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Euis Hermiati orcid scopus  -  Research Center for Biomaterials LIPI, Jl Raya Bogor KM 46 Cibinong 16911, Indonesia
Received: 19 Aug 2020; Revised: 2 Nov 2020; Accepted: 11 Nov 2020; Published: 1 May 2021; Available online: 19 Nov 2020.
Open Access Copyright (c) 2021 The Authors. Published by CBIORE
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Upscaling of biomass pretreatment from laboratory scale to a bench-scale reactor is one of the important steps in the application of the pretreatment for pilot or commercial scale. This study reports the optimization of pretreatment conditions, namely reaction temperature and time, by one factor at a time (OFAT) method for the enhancement of enzymatic saccharification of oil palm empty fruit bunch (OPEFB). OPEFB was pretreated using high temperature-pressure steam reactor with different reaction temperatures (160, 170, 180, 190, 200 °C) and times (10, 20, 30, 40, 50 min). The effectiveness of the pretreatment was determined based on chemical compositions of raw OPEFB and OPEFB pulp and sugar production from enzymatic saccharification of the OPEFB pulp.  Solubilized components from OPEFB, such as glucose, xylose, formic acid, acetic acid, 5-hydroxymethyl furfural (HMF), and furfural in the hydrolysate that generated during steam pretreatment were also determined. Pretreatment at 180°C for 20 min provides the highest sugar yields (97.30% of glucose yield per initial cellulose and 88.86% of xylose yield per initial hemicellulose). At the optimum condition, 34.9% of lignin and 30.75% of hemicellulose are successfully removed from the OPEFB and resulted in 3.43 delignification selectivity. The relationship between severity factor and by-products generated and the sugars obtained after enzymatic saccharification are discussed. The pulp of OPEFB at the optimum condition was also characterized for its morphological characteristic by scanning electron microscopy (SEM) and crystallinity by X-ray diffractometry (XRD).  These pulp characteristics are then compared with those of the raw OPEFB. The steam pretreatment causes some fiber disruptions with more defined and opened structures and increases the crystallinity index (CrI) by 2.9% compared to the raw OPEFB.
Keywords: Steam pretreatment; bench scale reactor; enzymatic saccharification; OPEFB
Funding: JST (Japan Science and Technology Agency)—JICA (Japan International Collaboration Agency)—SATREPS (Science and Technology Research Partnership for Sustainable Development)

Article Metrics:

  1. Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R. M., Aguilar, C. N., Garrote, G., & Ruiz, H. A. (2017). Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 243, 273-283; doi: 10.1016/j.biortech.2017.06.096
  2. Anderson, W. F., Dien, B. S., Brandon, S. K., & Peterson, J. D. (2007). Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. In Biotechnology for Fuels and Chemicals (pp. 13-21). Humana Press; doi: 10.1007/s12010-007-8041-y
  3. Anita, S. H., Solihat, N. N., Sari, F. P., Risanto, L., Fatriasari, W., & Hermiati, E. (2020). Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste and Biomass Valorization, 11(6), 2673-2687; doi: 10.1007/s12649-018-00566-w
  4. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196–206. doi: 10.1016/j.fuproc.2016.12.007
  5. de Carvalho, D. M., Sevastyanova, O., Penna, L. S., da Silva, B. P., Lindström, M. E., & Colodette, J. L. (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, 73, 118-126; doi: 10.1016/j.indcrop.2015.04.021
  6. Direktorat Perkebunan Indonesia. (2018). Statistik Perkebunan Indonesia (Free Corp Estate Statistics of Indonesia) 2017-2019 Kelapa Sawit (Oil Palm). Directorate General of Estate Crops, Ministry of Agriculture of Indonesia
  7. Ertas, M., Han, Q., Jameel, H., & Chang, H. (2014). Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresource Technology, 152, 259–266; doi: 10.1016/j.biortech.2013.11.026
  8. Ethaib, S., Omar, R., Kamal, S. M., & Biak, D. A. (2015). Microwave-assisted pretreatment of lignocellulosic biomass: a review. Journal of Engineering Science and Technology, 10, 97-109
  9. Fatriasari, W., Raniya, R., Oktaviani, M., & Hermiati, E. (2018). The improvement of sugar and bioethanol production of oil palm empty fruit bunches (Elaeis guineensis Jacq) through microwave-assisted maleic acid pretreatment. BioResources, 13(2), 4378–4403; doi: 10.15376/biores.13.2.4378-4403
  10. Fatriasari, W., Syafii, W., Wistara, N. J., Syamsu, K., & Prasetya, B. (2014). The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy Development, 3(2), 133–143; doi: 10.14710/ijred.3.2.133-143
  11. Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. In Biofuels (pp. 41-65). Springer, Berlin, Heidelberg; doi: 10.1007/10_2007_070
  12. Galia, A., Schiavo, B., Antonetti, C., Maria, A., Galletti, R., Interrante, L., Lessi, M., Scialdone, O., & Valenti, M. G. (2015). Autohydrolysis pretreatment of Arundo donax : a comparison between microwave ‑ assisted batch and fast heating rate flow ‑ through reaction systems. Biotechnology for Biofuels, 1–18; doi.org:10.1186/s13068-015-0398-5
  13. Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800; doi: 10.1016/j.biortech.2010.01.088
  14. Goh, C. S., Tan, H. T., & Lee, K. T. (2012). Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology, 110, 662–669.; doi: 10.1016/j.biortech.2012.01.083
  15. Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity - A key predictor of the enzymatic hydrolysis rate. FEBS Journal, 277(6), 1571–1582. doi: 10.1111/j.1742-4658.2010.07585.x
  16. Hermiati, E., Laksana, R. P. B., Fatriasari, W., Kholida, L. N., Thontowi, A., Arnieyanto, D. R., ... & Watanabe, T. (2020). Microwave-assisted acid pretreatment for enhancing enzymatic saccharification of sugarcane trash. Biomass Conversion and Biorefinery, 1-18; doi: 10.1007/s13399-020-00971-z
  17. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 99(18), 8940-8948; doi: 10.1016/j.biortech.2008.05.015
  18. Hsu, T.-C., Guo, G.-L., Chen, W.-H., & Hwang, W.-S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101(13), 4907–4913; doi: 10.1016/j.biortech.2009.10.009
  19. Jeong, S. Y., & Lee, J. W. (2015). Hydrothermal treatment. In Pretreatment of Biomass (pp. 61-74). Elsevier; doi: 10.1016/B978-0-12-800080-9.00005-0
  20. Kim, D. S., Myint, A. A., Lee, H. W., Yoon, J., & Lee, Y. (2013). Evaluation of hot compressed water pretreatment and enzymatic saccharification of tulip tree sawdust using severity factors. Bioresource Technology, 144, 460–466; doi: 10.1016/j.biortech.2013.06.071
  21. Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48(4–5), 408–415. doi: 10.1016/j.enzmictec.2011.01.007
  22. Kuila, A., Mukhopadhyay, M., Tuli, D. K., & Banerjee, R. (2011). Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI journal, 10, 85
  23. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1); doi: 10.1186/s40643-017-0137-9
  24. Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(March), 877–891. doi: 10.1016/j.rser.2018.03.111
  25. Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal Jr, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81(1), 33-44; doi: 10.1016/S0960-8524(01)00103-1
  26. Lee, J. M., Shi, J., Venditti, R. A., & Jameel, H. (2009). Autohydrolysis pretreatment of Coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technology, 100(24), 6434–6441; doi: 10.1016/j.biortech.2008.12.068
  27. McMillan, J. D. (1994). Pretreatment of Lignocellulosic Biomass; doi: 10.1021/bk-1994-0566.ch015
  28. Medina, J. D. C., Woiciechowski, A., Filho, A. Z., Nigam, P. S., Ramos, L. P., & Soccol, C. R. (2016). Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Bioresource Technology, 199, 173–180; doi: 10.1016/j.biortech.2015.08.126
  29. Overend, R. P., & Chornet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321(1561), 523-536; doi: 10.1098/rsta.1987.0029
  30. Pu, Y., Hu, F., Huang, F., Davison, B. H., & Ragauskas, A. J. (2013). Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels, 6(1), 15; doi: 10.1186/1754-6834-6-15
  31. Qing, Q., Huang, M., He, Y., Wang, L., & Zhang, Y. (2015). Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 177(7), 1493–1507.; doi: 10.1007/s12010-015-1829-2
  32. Rigual, V., Santos, T. M., Domínguez, J. C., Alonso, M. V., Oliet, M., & Rodriguez, F. (2018). Evaluation of hardwood and softwood fractionation using autohydrolysis and ionic liquid microwave pretreatment. Biomass and Bioenergy, 117, 190-197; doi: 10.1016/j.biombioe.2018.07.014
  33. Romaní, A., Garrote, G., López, F., & Parajó, J. C. (2011). Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresource Technology, 102(10), 5896-5904; doi: 10.1016/j.biortech.2011.02.070
  34. Rowell, R. M., Rowell, R. M., Pettersen, R., & Tshabalala, M. A. (2019). Handbook of Wood Chemistry and Wood Composites; doi: 10.1201/b12487-5
  35. Santos, R. B., Lee, J. M., Jameel, H., Chang, H., & Lucia, L. A. (2012). Effects of hardwood structural and chemical characteristics on enzymatic hydrolysis for biofuel production. Bioresource Technology, 110, 232–238; doi: 10.1016/j.biortech.2012.01.085
  36. Shamsudin, S., Md Shah, U. K., Zainudin, H., Abd-Aziz, S., Mustapa Kamal, S. M., Shirai, Y., & Hassan, M. A. (2012). Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass and Bioenergy, 36, 280–288; doi: 10.1016/j.biombioe.2011.10.040
  37. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, 1617(1), 1-16
  38. Solihat, N. N., Sari, F. P., Risanto, L., Anita, S. H., Fitria, F., Fatriasari, W., & Hermiati, E. (2017). Disruption of Oil Palm Empty Fruit Bunches by Microwave-assisted Oxalic Acid Pretreatment. Journal of Mathematical and Fundamental Sciences, 49(3), 244-257; doi: 10.5614/j.math.fund.sci.2017.49.3.3
  39. Taherzadeh, M. J., & Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2(3), 472-499
  40. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. In International Journal of Molecular Sciences, 9(9). doi: 10.3390/ijms9091621
  41. TAPPI (1997) Preparation of Wood for Chemical Analysis. TAPPI test method T 264 cm-97
  42. TAPPI (1997) Solvent Extractives of Wood and Pulp. TAPPI test method T 204 cm-97
  43. TAPPI (2002) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. TAPPI test methods T 211 om-2
  44. Tejirian, A., & Xu, F. (2011). Enzyme and Microbial Technology Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme and Microbial Technology, 48(3), 239–247; doi: 10.1016/j.enzmictec.2010.11.004
  45. Timorria, F. (2019). Produksi Minyak Sawit Indonesia Tumbuh 14 Persen - Ekonomi Bisnis.com. https://ekonomi.bisnis.com/read/20191017/99/1160433/produksi-minyak-sawit-indonesia-tumbuh-14-persen
  46. Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110(1), 130–137. doi: 10.1016/j.jaap.2014.08.013
  47. Wise, L. E. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade, 122, 35-43
  48. Xiao, L. P., Shi, Z. J., Xu, F., & Sun, R. C. (2013). Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: Evaluation of the process as a conversion method in a biorefinery concept. Bioresource Technology, 135, 73–81; doi.org/10.1016/j.biortech.2012.08.143
  49. Xiao, L. P., Sun, Z. J., Shi, Z. J., Xu, F., & Sun, R. C. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources, 6(2), 1576–1598; doi.org/10.15376/biores.6.2.1576-1598
  50. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., … Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience, Biotechnology and Biochemistry, 72(3), 805–810, doi: 10.1271/bbb.70689
  51. Yu, Y., & Wu, H. (2010). Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Industrial & Engineering Chemistry Research, 49(8), 3902-3909; doi: 10.1021/ie901925g
  52. Zakaria, M. R., Hirata, S., & Hassan, M. A. (2015). Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresource Technology, 176, 142–148; doi: 10.1016/j.biortech.2014.11.027
  53. Zhou, Y., Li, Y., Wan, C., Li, D., & Mao, Z. (2010). Effect of hot water pretreatment severity on the degradation and enzymatic hydrolysis of corn stover. Transactions of the ASABE, 53(6), 1929–1934; doi: 10.13031/2013.35792
  54. Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., Yuan, Z. (2016). Bioresource Technology Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75; doi: 10.1016/j.biortech.2015.08.051

Last update: 2021-04-10 16:25:06

No citation recorded.

Last update: 2021-04-10 16:25:06

No citation recorded.