Pretreatment of Oil Palm Empty Fruit Bunch (OPEFB) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification


Article Metrics:
- Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R. M., Aguilar, C. N., Garrote, G., & Ruiz, H. A. (2017). Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 243, 273-283; doi: 10.1016/j.biortech.2017.06.096
- Anderson, W. F., Dien, B. S., Brandon, S. K., & Peterson, J. D. (2007). Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. In Biotechnology for Fuels and Chemicals (pp. 13-21). Humana Press; doi: 10.1007/s12010-007-8041-y
- Anita, S. H., Solihat, N. N., Sari, F. P., Risanto, L., Fatriasari, W., & Hermiati, E. (2020). Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste and Biomass Valorization, 11(6), 2673-2687; doi: 10.1007/s12649-018-00566-w
- Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196–206. doi: 10.1016/j.fuproc.2016.12.007
- de Carvalho, D. M., Sevastyanova, O., Penna, L. S., da Silva, B. P., Lindström, M. E., & Colodette, J. L. (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, 73, 118-126; doi: 10.1016/j.indcrop.2015.04.021
- Direktorat Perkebunan Indonesia. (2018). Statistik Perkebunan Indonesia (Free Corp Estate Statistics of Indonesia) 2017-2019 Kelapa Sawit (Oil Palm). Directorate General of Estate Crops, Ministry of Agriculture of Indonesia
- Ertas, M., Han, Q., Jameel, H., & Chang, H. (2014). Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresource Technology, 152, 259–266; doi: 10.1016/j.biortech.2013.11.026
- Ethaib, S., Omar, R., Kamal, S. M., & Biak, D. A. (2015). Microwave-assisted pretreatment of lignocellulosic biomass: a review. Journal of Engineering Science and Technology, 10, 97-109.
- Fatriasari, W., Raniya, R., Oktaviani, M., & Hermiati, E. (2018). The improvement of sugar and bioethanol production of oil palm empty fruit bunches (Elaeis guineensis Jacq) through microwave-assisted maleic acid pretreatment. BioResources, 13(2), 4378–4403; doi: 10.15376/biores.13.2.4378-4403
- Fatriasari, W., Syafii, W., Wistara, N. J., Syamsu, K., & Prasetya, B. (2014). The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy Development, 3(2), 133–143; doi: 10.14710/ijred.3.2.133-143
- Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. In Biofuels (pp. 41-65). Springer, Berlin, Heidelberg; doi: 10.1007/10_2007_070
- Galia, A., Schiavo, B., Antonetti, C., Maria, A., Galletti, R., Interrante, L., Lessi, M., Scialdone, O., & Valenti, M. G. (2015). Autohydrolysis pretreatment of Arundo donax : a comparison between microwave ‑ assisted batch and fast heating rate flow ‑ through reaction systems. Biotechnology for Biofuels, 1–18; doi.org:10.1186/s13068-015-0398-5
- Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800; doi: 10.1016/j.biortech.2010.01.088
- Goh, C. S., Tan, H. T., & Lee, K. T. (2012). Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology, 110, 662–669.; doi: 10.1016/j.biortech.2012.01.083
- Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity - A key predictor of the enzymatic hydrolysis rate. FEBS Journal, 277(6), 1571–1582. doi: 10.1111/j.1742-4658.2010.07585.x
- Hermiati, E., Laksana, R. P. B., Fatriasari, W., Kholida, L. N., Thontowi, A., Arnieyanto, D. R., ... & Watanabe, T. (2020). Microwave-assisted acid pretreatment for enhancing enzymatic saccharification of sugarcane trash. Biomass Conversion and Biorefinery, 1-18; doi: 10.1007/s13399-020-00971-z
- Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technology, 99(18), 8940-8948; doi: 10.1016/j.biortech.2008.05.015
- Hsu, T.-C., Guo, G.-L., Chen, W.-H., & Hwang, W.-S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101(13), 4907–4913; doi: 10.1016/j.biortech.2009.10.009
- Jeong, S. Y., & Lee, J. W. (2015). Hydrothermal treatment. In Pretreatment of Biomass (pp. 61-74). Elsevier; doi: 10.1016/B978-0-12-800080-9.00005-0
- Kim, D. S., Myint, A. A., Lee, H. W., Yoon, J., & Lee, Y. (2013). Evaluation of hot compressed water pretreatment and enzymatic saccharification of tulip tree sawdust using severity factors. Bioresource Technology, 144, 460–466; doi: 10.1016/j.biortech.2013.06.071
- Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48(4–5), 408–415. doi: 10.1016/j.enzmictec.2011.01.007
- Kuila, A., Mukhopadhyay, M., Tuli, D. K., & Banerjee, R. (2011). Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI journal, 10, 85.
- Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1); doi: 10.1186/s40643-017-0137-9
- Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(March), 877–891. doi: 10.1016/j.rser.2018.03.111
- Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal Jr, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81(1), 33-44; doi: 10.1016/S0960-8524(01)00103-1
- Lee, J. M., Shi, J., Venditti, R. A., & Jameel, H. (2009). Autohydrolysis pretreatment of Coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technology, 100(24), 6434–6441; doi: 10.1016/j.biortech.2008.12.068
- McMillan, J. D. (1994). Pretreatment of Lignocellulosic Biomass; doi: 10.1021/bk-1994-0566.ch015
- Medina, J. D. C., Woiciechowski, A., Filho, A. Z., Nigam, P. S., Ramos, L. P., & Soccol, C. R. (2016). Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Bioresource Technology, 199, 173–180; doi: 10.1016/j.biortech.2015.08.126
- Overend, R. P., & Chornet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321(1561), 523-536; doi: 10.1098/rsta.1987.0029
- Pu, Y., Hu, F., Huang, F., Davison, B. H., & Ragauskas, A. J. (2013). Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels, 6(1), 15; doi: 10.1186/1754-6834-6-15
- Qing, Q., Huang, M., He, Y., Wang, L., & Zhang, Y. (2015). Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 177(7), 1493–1507.; doi: 10.1007/s12010-015-1829-2
- Rigual, V., Santos, T. M., Domínguez, J. C., Alonso, M. V., Oliet, M., & Rodriguez, F. (2018). Evaluation of hardwood and softwood fractionation using autohydrolysis and ionic liquid microwave pretreatment. Biomass and Bioenergy, 117, 190-197; doi: 10.1016/j.biombioe.2018.07.014
- Romaní, A., Garrote, G., López, F., & Parajó, J. C. (2011). Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresource Technology, 102(10), 5896-5904; doi: 10.1016/j.biortech.2011.02.070
- Rowell, R. M., Rowell, R. M., Pettersen, R., & Tshabalala, M. A. (2019). Handbook of Wood Chemistry and Wood Composites; doi: 10.1201/b12487-5
- Santos, R. B., Lee, J. M., Jameel, H., Chang, H., & Lucia, L. A. (2012). Effects of hardwood structural and chemical characteristics on enzymatic hydrolysis for biofuel production. Bioresource Technology, 110, 232–238; doi: 10.1016/j.biortech.2012.01.085
- Shamsudin, S., Md Shah, U. K., Zainudin, H., Abd-Aziz, S., Mustapa Kamal, S. M., Shirai, Y., & Hassan, M. A. (2012). Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass and Bioenergy, 36, 280–288; doi: 10.1016/j.biombioe.2011.10.040
- Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, 1617(1), 1-16.
- Solihat, N. N., Sari, F. P., Risanto, L., Anita, S. H., Fitria, F., Fatriasari, W., & Hermiati, E. (2017). Disruption of Oil Palm Empty Fruit Bunches by Microwave-assisted Oxalic Acid Pretreatment. Journal of Mathematical and Fundamental Sciences, 49(3), 244-257; doi: 10.5614/j.math.fund.sci.2017.49.3.3
- Taherzadeh, M. J., & Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2(3), 472-499.
- Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. In International Journal of Molecular Sciences, 9(9). doi: 10.3390/ijms9091621
- TAPPI (1997) Preparation of Wood for Chemical Analysis. TAPPI test method T 264 cm-97
- TAPPI (1997) Solvent Extractives of Wood and Pulp. TAPPI test method T 204 cm-97
- TAPPI (2002) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. TAPPI test methods T 211 om-2
- Tejirian, A., & Xu, F. (2011). Enzyme and Microbial Technology Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme and Microbial Technology, 48(3), 239–247; doi: 10.1016/j.enzmictec.2010.11.004
- Timorria, F. (2019). Produksi Minyak Sawit Indonesia Tumbuh 14 Persen - Ekonomi Bisnis.com. https://ekonomi.bisnis.com/read/20191017/99/1160433/produksi-minyak-sawit-indonesia-tumbuh-14-persen
- Werner, K., Pommer, L., & Broström, M. (2014). Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, 110(1), 130–137. doi: 10.1016/j.jaap.2014.08.013
- Wise, L. E. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade, 122, 35-43.
- Xiao, L. P., Shi, Z. J., Xu, F., & Sun, R. C. (2013). Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: Evaluation of the process as a conversion method in a biorefinery concept. Bioresource Technology, 135, 73–81; doi.org/10.1016/j.biortech.2012.08.143
- Xiao, L. P., Sun, Z. J., Shi, Z. J., Xu, F., & Sun, R. C. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources, 6(2), 1576–1598; doi.org/10.15376/biores.6.2.1576-1598
- Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., … Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience, Biotechnology and Biochemistry, 72(3), 805–810, doi: 10.1271/bbb.70689
- Yu, Y., & Wu, H. (2010). Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Industrial & Engineering Chemistry Research, 49(8), 3902-3909; doi: 10.1021/ie901925g
- Zakaria, M. R., Hirata, S., & Hassan, M. A. (2015). Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresource Technology, 176, 142–148; doi: 10.1016/j.biortech.2014.11.027
- Zhou, Y., Li, Y., Wan, C., Li, D., & Mao, Z. (2010). Effect of hot water pretreatment severity on the degradation and enzymatic hydrolysis of corn stover. Transactions of the ASABE, 53(6), 1929–1934; doi: 10.13031/2013.35792
- Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., Yuan, Z. (2016). Bioresource Technology Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75; doi: 10.1016/j.biortech.2015.08.051
Last update: 2021-01-22 06:35:56
Last update: 2021-01-22 06:35:57

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.