Synthesis of Graphene Oxide Enriched Natural Kaolinite Clay and Its Application For Biodiesel Production


Article Metrics:
- Ali, B., Yusup, S., Quitain, A. T., Alnarabiji, M. S., Kamil, R. N. M., & Kida, T. (2018). Synthesis of novel graphene oxide/bentonite bi-functional heterogeneous catalyst for one-pot esterification and transesterification reactions. Energy Conversion and Management, 171(June), 1801–1812. https://doi.org/10.1016/j.enconman.2018.06.082
- Alves, H. J., da Rocha, A. M., Monteiro, M. R., Moretti, C., Cabrelon, M. D., Schwengber, C. A., & Milinsk, M. C. (2014). Treatment of clay with KF: New solid catalyst for biodiesel production. Applied Clay Science, 91–92, 98–104. https://doi.org/10.1016/j.clay.2014.02.004
- Amri, A., Ekawati, L., Herman, S., Yenti, S. R., Zultiniar, Aziz, Y., Utami, S. P., & Bahruddin. (2018). Properties enhancement of cassava starch based bioplastics with addition of graphene oxide. IOP Conference Series: Materials Science and Engineering, 345(1). https://doi.org/10.1088/1757-899X/345/1/012025
- Bet-Moushoul, E., Farhadi, K., Mansourpanah, Y., Molaie, R., Forough, M., & Nikbakht, A. M. (2016). Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production. Renewable Energy, 92, 12–21. https://doi.org/10.1016/j.renene.2016.01.070
- Cheng, J., Qiu, Y., Zhang, J., Huang, R., Yang, W., & Fan, Z. (2017). Conversion of lipids from wet microalgae into biodiesel using sulfonated graphene oxide catalysts. Bioresource Technology, 244(May), 569–574. https://doi.org/10.1016/j.biortech.2017.07.142
- Costanzo, P. M. (2001). Baseline studies of the clay minerals society source clays: Introduction. Clays and Clay Minerals, 49(5), 372–373. https://doi.org/10.1346/CCMN.2001.0490502
- D’Souza, R., Vats, T., Chattree, A., & Siril, P. F. (2018). Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renewable Energy, 126, 1064–1073. https://doi.org/10.1016/j.renene.2018.04.035
- Dang, T. H., Chen, B. H., & Lee, D. J. (2013). Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol. Bioresource Technology, 145, 175–181. https://doi.org/10.1016/j.biortech.2012.12.024
- Fadhil, A. B., Al-Tikrity, E. T. B., & Khalaf, A. M. (2018). Transesterification of non-edible oils over potassium acetate impregnated CaO solid base catalyst. Fuel, 234(June), 81–93. https://doi.org/10.1016/j.fuel.2018.06.121
- Gaidukevic, J., Barkauskas, J., Malaika, A., Rechnia-Goracy, P., Mozdzyńska, A., Jasulaitiene, V., & Kozlowski, M. (2018). Modified graphene-based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel. Cuihua Xuebao/Chinese Journal of Catalysis, 39(10), 1633–1645. https://doi.org/10.1016/S1872-2067(18)63087-6
- Gao, W. (2012). Graphite Oxide:Structure,Reduction and Applications. March 2012, 6–10
- Ghiaci, M., Aghabarari, B., & Gil, A. (2011). Production of biodiesel by esterification of natural fatty acids over modified organoclay catalysts. Fuel, 90(11), 3382–3389. https://doi.org/10.1016/j.fuel.2011.04.008
- Hidayat, A., Setiadji, S., & Hadisantoso, E. P. (2019). Sintesis Oksida Grafena Tereduksi (rGO) dari Arang Tempurung Kelapa (Cocos nucifera). Al-Kimiya, 5(2), 68–73. https://doi.org/10.15575/ak.v5i2.3810
- Johansen, I. (2014). Wet Chemical Synthesis of Graphene for Battery Applications. June
- Knothe, G., & Gerpen, J. Van. (2005). The Biodiesel Handbook. In The Biodiesel Handbook. https://doi.org/10.1201/9781439822357
- Kusrini, E. (2018). Synthesis and Characterization of Graphite Oxide, Graphene Oxide and Reduced Graphene Oxide from Graphite Waste using Modified Hummers’s Method and Zinc as Reducing Agent. International Journal of Technology, 10(6)(1), 1093–1104
- Loy, A. C. M., Quitain, A. T., Lam, M. K., Yusup, S., Sasaki, M., & Kida, T. (2019). Development of high microwave-absorptive bifunctional graphene oxide-based catalyst for biodiesel production. Energy Conversion and Management, 180(September 2018), 1013–1025. https://doi.org/10.1016/j.enconman.2018.11.043
- Narayanan, D. P., Sankaran, S., & Narayanan, B. N. (2019). Novel rice husk ash - reduced graphene oxide nanocomposite catalysts for solvent free Biginelli reaction with a statistical approach for the optimization of reaction parameters. Materials Chemistry and Physics, 222(September 2018), 63–74. https://doi.org/10.1016/j.matchemphys.2018.09.078
- Olutoye, M. A., & Hameed, B. H. (2013). A highly active clay-based catalyst for the synthesis of fatty acid methyl ester from waste cooking palm oil. Applied Catalysis A: General, 450, 57–62. https://doi.org/10.1016/j.apcata.2012.09.049
- Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M., & Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86, 392–398. https://doi.org/10.1016/j.renene.2015.08.016
- Rabie, A. M., Mohammed, E. A., & Negm, N. A. (2018). Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. Journal of Molecular Liquids, 254(2018), 260–266. https://doi.org/10.1016/j.molliq.2018.01.110
- Rafitasari, Y., Suhendar, H., Imani, N., Luciana, F., Radean, H., & Santoso, I. (2016). Sintesis Graphene Oxide Dan Reduced Graphene Oxide. October, SNF2016-MPS-95-SNF2016-MPS-98. https://doi.org/10.21009/0305020218
- Rahayu, S. (2017). Prosiding Seminar Nasional Kimia UNY 2017 Sinergi Penelitian dan Pembelajaran untuk Mendukung Pengembangan Literasi Kimia pada Era Global Ruang Seminar FMIPA UNY, 14 Oktober 2017. Prosiding Seminar Nasional Kimia UNY 2017, 2009, 319–324
- Rahmani Vahid, B., & Haghighi, M. (2017). Biodiesel production from sunflower oil over MgO/MgAl2O4nanocatalyst: Effect of fuel type on catalyst nanostructure and performance. Energy Conversion and Management, 134, 290–300. https://doi.org/10.1016/j.enconman.2016.12.048
- Refaat, A. A. (2009). Correlation between the chemical structure of biodiesel and its physical properties. International Journal of Environmental Science and Technology, 6(4), 677–694. https://doi.org/10.1007/BF03326109
- Ruhe, C. H. W. (1973). Statistical Review. JAMA: The Journal of the American Medical Association, 225(3), 299–306. https://doi.org/10.1001/jama.1973.03220300055017
- Schroeder, P. (2002). Infrared spectroscopy in clay science. Teaching Clay Science, 11(January 2002), 181–206
- Shao, G., Lu, Y., Wu, F., Yang, C., Zeng, F., & Wu, Q. (2012). Graphene oxide: The mechanisms of oxidation and exfoliation. Journal of Materials Science, 47(10), 4400–4409. https://doi.org/10.1007/s10853-012-6294-5
- Simarmata, F. H. W. (2018). Sintesis Grafena Berlapis Nano Dari Grafit Menggunakan Reduktor Magnesium
- Soetaredjo, F. E., Ayucitra, A., Ismadji, S., & Maukar, A. L. (2011). KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 53(2), 341–346. https://doi.org/10.1016/j.clay.2010.12.018
- Suryaputra, W., Winata, I., Indraswati, N., & Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renewable Energy, 50, 795–799. https://doi.org/10.1016/j.renene.2012.08.060
- Syukri, S., Septioga, K., Arief, S., Putri, Y. E., Efdi, M., & Septiani, U. (2020). Natural Clay of Pasaman Barat Enriched by CaO of Chicken Eggshells as Catalyst for Biodiesel Production. 15(3), 662–673. https://doi.org/10.9767/bcrec.15.3.8097.662-673
- Talyzin, A. V, Solozhenko, V. L., Kurakevych, O. O., Szabó, T., Døkµny, I., Kurnosov, A., & Dmitriev, V. (2008). Colossal Pressure-Induced Lattice Expansion of Graphite Oxide in the Presence of Water **. 8268–8271. https://doi.org/10.1002/anie.200802860
- Taufantri, Y., Irdhawati, I., & Asih, I. A. R. A. (2016). Sintesis dan Karakterisasi Grafena dengan Metode Reduksi Grafit Oksida Menggunakan Pereduksi Zn. Jurnal Kimia VALENSI, 2(1), 17–23. https://doi.org/10.15408/jkv.v2i1.2233
- Thomas, R. E. (2010). High temperature processing of kaolinitic materials. The University of Birmingham Doctoral Thesis, February, 4. https://core.ac.uk/download/pdf/33528378.pdf
- Waktu, P., Struktur, T., Pradesar, Y., Teknik, J., & Industri, F. T. (2013). Pengaruh Waktu Ultrasonikasi dan Waktu Tahan Proses Hydrothermal Terhadap Struktur dan Sifat Listrik Material Graphene. 2(1)
- Xie, W., & Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical, 255(1–2), 1–9. https://doi.org/10.1016/j.molcata.2006.03.061
- Zhang, Z. Y., Huang, L., Liu, F., Wang, M. K., Fu, Q. L., & Zhu, J. (2016). Characteristics of clay minerals in soil particles of two Alfisols in China. Applied Clay Science, 120, 51–60 https://doi.org/10.1016/j.clay.2015.11.018
Last update: 2021-02-28 18:18:42
Last update: 2021-02-28 18:18:42

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.