Synthesis of Graphene Oxide Enriched Natural Kaolinite Clay and Its Application For Biodiesel Production

*Syukri Syukri orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Science, Andalas University, Indonesia
Fadhil Ferdian  -  Department of Chemistry, Faculty of Mathematics and Natural Science, Andalas University, Indonesia
Yetria Rilda  -  Department of Chemistry, Faculty of Mathematics and Natural Science, Andalas University, Indonesia
Yulia Eka Putri  -  Department of Chemistry, Faculty of Mathematics and Natural Science, Andalas University, Indonesia
Mai Efdi  -  Department of Chemistry, Faculty of Mathematics and Natural Science, Andalas University, Indonesia
Upita Septiani  -  Department of Chemistry, Faculty of Mathematics and Natural Science, Andalas University, Indonesia
Received: 17 Sep 2020; Revised: 17 Nov 2020; Accepted: 14 Dec 2020; Published: 1 May 2021; Available online: 6 Jan 2021.
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
A heterogeneous catalyst is one type of catalyst which is very effective for biodiesel production; thus, in this study, a novel heterogeneous bifunctional catalyst was prepared by kaolinite clay obtained from Padang of West Sumatera and impregnated with graphene oxide and potassium hydroxide (KOH) for the simultaneous esterification and transesterification reactions of palm oil into biodiesel. For comparison, two other catalysts were also prepared. The first catalyst was the same clay which was heated at 450ºC for 4 hours, and the second catalyst was the same clay which was impregnated with potassium hydroxide (KOH) only. The three catalysts were characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Fourier Transform Infra-Red (FTIR). XRF analysis showed that the clay sample’s main composition consisted of 54% silica, 35% alumina, and 7% hematite. The XRD analysis results showed that the most dominant crystal composition was quartz, kaolinite, and hematite. The analysis results using FTIR showed a change in intensity and shift in wave numbers indicating a cation exchange. The catalytic activity test was carried out with a ratio of oil and methanol 1:6, catalyst amount 5%, 60ºC reaction temperature, and 4 hours of reaction time.The results showed that the catalytic activity of clays impregnated with graphene oxide and potassium hydroxide was better with a yield of 58% compared to clays without impregnation and other clays that were only impregnated with KOH under the yields of 0.8% and 0.4%, respectively
Keywords: Graphene Oxide; Clay; Transesterification; Biodiesel; Heterogeneous Catalyst.
Funding: LLPM of Andalas University

Article Metrics:

  1. Ali, B., Yusup, S., Quitain, A. T., Alnarabiji, M. S., Kamil, R. N. M., & Kida, T. (2018). Synthesis of novel graphene oxide/bentonite bi-functional heterogeneous catalyst for one-pot esterification and transesterification reactions. Energy Conversion and Management, 171(June), 1801–1812. https://doi.org/10.1016/j.enconman.2018.06.082
  2. Alves, H. J., da Rocha, A. M., Monteiro, M. R., Moretti, C., Cabrelon, M. D., Schwengber, C. A., & Milinsk, M. C. (2014). Treatment of clay with KF: New solid catalyst for biodiesel production. Applied Clay Science, 91–92, 98–104. https://doi.org/10.1016/j.clay.2014.02.004
  3. Amri, A., Ekawati, L., Herman, S., Yenti, S. R., Zultiniar, Aziz, Y., Utami, S. P., & Bahruddin. (2018). Properties enhancement of cassava starch based bioplastics with addition of graphene oxide. IOP Conference Series: Materials Science and Engineering, 345(1). https://doi.org/10.1088/1757-899X/345/1/012025
  4. Bet-Moushoul, E., Farhadi, K., Mansourpanah, Y., Molaie, R., Forough, M., & Nikbakht, A. M. (2016). Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production. Renewable Energy, 92, 12–21. https://doi.org/10.1016/j.renene.2016.01.070
  5. Cheng, J., Qiu, Y., Zhang, J., Huang, R., Yang, W., & Fan, Z. (2017). Conversion of lipids from wet microalgae into biodiesel using sulfonated graphene oxide catalysts. Bioresource Technology, 244(May), 569–574. https://doi.org/10.1016/j.biortech.2017.07.142
  6. Costanzo, P. M. (2001). Baseline studies of the clay minerals society source clays: Introduction. Clays and Clay Minerals, 49(5), 372–373. https://doi.org/10.1346/CCMN.2001.0490502
  7. D’Souza, R., Vats, T., Chattree, A., & Siril, P. F. (2018). Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renewable Energy, 126, 1064–1073. https://doi.org/10.1016/j.renene.2018.04.035
  8. Dang, T. H., Chen, B. H., & Lee, D. J. (2013). Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol. Bioresource Technology, 145, 175–181. https://doi.org/10.1016/j.biortech.2012.12.024
  9. Fadhil, A. B., Al-Tikrity, E. T. B., & Khalaf, A. M. (2018). Transesterification of non-edible oils over potassium acetate impregnated CaO solid base catalyst. Fuel, 234(June), 81–93. https://doi.org/10.1016/j.fuel.2018.06.121
  10. Gaidukevic, J., Barkauskas, J., Malaika, A., Rechnia-Goracy, P., Mozdzyńska, A., Jasulaitiene, V., & Kozlowski, M. (2018). Modified graphene-based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel. Cuihua Xuebao/Chinese Journal of Catalysis, 39(10), 1633–1645. https://doi.org/10.1016/S1872-2067(18)63087-6
  11. Gao, W. (2012). Graphite Oxide:Structure,Reduction and Applications. March 2012, 6–10
  12. Ghiaci, M., Aghabarari, B., & Gil, A. (2011). Production of biodiesel by esterification of natural fatty acids over modified organoclay catalysts. Fuel, 90(11), 3382–3389. https://doi.org/10.1016/j.fuel.2011.04.008
  13. Hidayat, A., Setiadji, S., & Hadisantoso, E. P. (2019). Sintesis Oksida Grafena Tereduksi (rGO) dari Arang Tempurung Kelapa (Cocos nucifera). Al-Kimiya, 5(2), 68–73. https://doi.org/10.15575/ak.v5i2.3810
  14. Johansen, I. (2014). Wet Chemical Synthesis of Graphene for Battery Applications. June
  15. Knothe, G., & Gerpen, J. Van. (2005). The Biodiesel Handbook. In The Biodiesel Handbook. https://doi.org/10.1201/9781439822357
  16. Kusrini, E. (2018). Synthesis and Characterization of Graphite Oxide, Graphene Oxide and Reduced Graphene Oxide from Graphite Waste using Modified Hummers’s Method and Zinc as Reducing Agent. International Journal of Technology, 10(6)(1), 1093–1104
  17. Loy, A. C. M., Quitain, A. T., Lam, M. K., Yusup, S., Sasaki, M., & Kida, T. (2019). Development of high microwave-absorptive bifunctional graphene oxide-based catalyst for biodiesel production. Energy Conversion and Management, 180(September 2018), 1013–1025. https://doi.org/10.1016/j.enconman.2018.11.043
  18. Narayanan, D. P., Sankaran, S., & Narayanan, B. N. (2019). Novel rice husk ash - reduced graphene oxide nanocomposite catalysts for solvent free Biginelli reaction with a statistical approach for the optimization of reaction parameters. Materials Chemistry and Physics, 222(September 2018), 63–74. https://doi.org/10.1016/j.matchemphys.2018.09.078
  19. Olutoye, M. A., & Hameed, B. H. (2013). A highly active clay-based catalyst for the synthesis of fatty acid methyl ester from waste cooking palm oil. Applied Catalysis A: General, 450, 57–62. https://doi.org/10.1016/j.apcata.2012.09.049
  20. Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M., & Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86, 392–398. https://doi.org/10.1016/j.renene.2015.08.016
  21. Rabie, A. M., Mohammed, E. A., & Negm, N. A. (2018). Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. Journal of Molecular Liquids, 254(2018), 260–266. https://doi.org/10.1016/j.molliq.2018.01.110
  22. Rafitasari, Y., Suhendar, H., Imani, N., Luciana, F., Radean, H., & Santoso, I. (2016). Sintesis Graphene Oxide Dan Reduced Graphene Oxide. October, SNF2016-MPS-95-SNF2016-MPS-98. https://doi.org/10.21009/0305020218
  23. Rahayu, S. (2017). Prosiding Seminar Nasional Kimia UNY 2017 Sinergi Penelitian dan Pembelajaran untuk Mendukung Pengembangan Literasi Kimia pada Era Global Ruang Seminar FMIPA UNY, 14 Oktober 2017. Prosiding Seminar Nasional Kimia UNY 2017, 2009, 319–324
  24. Rahmani Vahid, B., & Haghighi, M. (2017). Biodiesel production from sunflower oil over MgO/MgAl2O4nanocatalyst: Effect of fuel type on catalyst nanostructure and performance. Energy Conversion and Management, 134, 290–300. https://doi.org/10.1016/j.enconman.2016.12.048
  25. Refaat, A. A. (2009). Correlation between the chemical structure of biodiesel and its physical properties. International Journal of Environmental Science and Technology, 6(4), 677–694. https://doi.org/10.1007/BF03326109
  26. Ruhe, C. H. W. (1973). Statistical Review. JAMA: The Journal of the American Medical Association, 225(3), 299–306. https://doi.org/10.1001/jama.1973.03220300055017
  27. Schroeder, P. (2002). Infrared spectroscopy in clay science. Teaching Clay Science, 11(January 2002), 181–206
  28. Shao, G., Lu, Y., Wu, F., Yang, C., Zeng, F., & Wu, Q. (2012). Graphene oxide: The mechanisms of oxidation and exfoliation. Journal of Materials Science, 47(10), 4400–4409. https://doi.org/10.1007/s10853-012-6294-5
  29. Simarmata, F. H. W. (2018). Sintesis Grafena Berlapis Nano Dari Grafit Menggunakan Reduktor Magnesium
  30. Soetaredjo, F. E., Ayucitra, A., Ismadji, S., & Maukar, A. L. (2011). KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 53(2), 341–346. https://doi.org/10.1016/j.clay.2010.12.018
  31. Suryaputra, W., Winata, I., Indraswati, N., & Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renewable Energy, 50, 795–799. https://doi.org/10.1016/j.renene.2012.08.060
  32. Syukri, S., Septioga, K., Arief, S., Putri, Y. E., Efdi, M., & Septiani, U. (2020). Natural Clay of Pasaman Barat Enriched by CaO of Chicken Eggshells as Catalyst for Biodiesel Production. 15(3), 662–673. https://doi.org/10.9767/bcrec.15.3.8097.662-673
  33. Talyzin, A. V, Solozhenko, V. L., Kurakevych, O. O., Szabó, T., Døkµny, I., Kurnosov, A., & Dmitriev, V. (2008). Colossal Pressure-Induced Lattice Expansion of Graphite Oxide in the Presence of Water **. 8268–8271. https://doi.org/10.1002/anie.200802860
  34. Taufantri, Y., Irdhawati, I., & Asih, I. A. R. A. (2016). Sintesis dan Karakterisasi Grafena dengan Metode Reduksi Grafit Oksida Menggunakan Pereduksi Zn. Jurnal Kimia VALENSI, 2(1), 17–23. https://doi.org/10.15408/jkv.v2i1.2233
  35. Thomas, R. E. (2010). High temperature processing of kaolinitic materials. The University of Birmingham Doctoral Thesis, February, 4. https://core.ac.uk/download/pdf/33528378.pdf
  36. Waktu, P., Struktur, T., Pradesar, Y., Teknik, J., & Industri, F. T. (2013). Pengaruh Waktu Ultrasonikasi dan Waktu Tahan Proses Hydrothermal Terhadap Struktur dan Sifat Listrik Material Graphene. 2(1)
  37. Xie, W., & Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical, 255(1–2), 1–9. https://doi.org/10.1016/j.molcata.2006.03.061
  38. Zhang, Z. Y., Huang, L., Liu, F., Wang, M. K., Fu, Q. L., & Zhu, J. (2016). Characteristics of clay minerals in soil particles of two Alfisols in China. Applied Clay Science, 120, 51–60 https://doi.org/10.1016/j.clay.2015.11.018

Last update: 2021-05-17 18:15:44

No citation recorded.

Last update: 2021-05-17 18:15:44

No citation recorded.