skip to main content

The CO2/CH4 Separation Potential of ZIF-8/Polysulfone Mixed Matrix Membranes at Elevated Particle Loading for Biogas Upgradation Process

Department of Chemical Engineering, Faculty of Engineering, University of Surabaya (UBAYA), Indonesia

Received: 26 Sep 2020; Revised: 16 Nov 2020; Accepted: 30 Nov 2020; Available online: 5 Dec 2020; Published: 1 May 2021.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Biogas is a renewable energy that has been explored widely in Indonesia to substitute non-renewable energy. However, the presence of certain gas, such as carbon dioxide (CO2), can decrease the calorific value and generate greenhouse gas. Hence, the separation of CO2 from methane (CH4) occurs as a crucial step to improve the utilization of biogas. The separation of CH4/COcan be conducted using a polymeric membrane that needs no chemical, hence considered as an environmentally friendly technique. However, the utilization of polymeric membrane in gas separation processes is hampered by the trade-off between gas throughput and selectivity. To solve this problem, the incorporation of inorganic particles, such as Zeolitic Imidazolate Framework-8 (ZIF-8) particles, into the polymer matrix to improve the gas separation performance of the membrane has been conducted recently. In this research, ZIF-8 has been incorporated into Polysulfone matrix to form ZIF-8/Polysulfone-based membrane by simple blending and phase inversion techniques in flat sheet configuration. The pure gas permeation tests showed an increase in gas permeability (26 Barrer compared to 17 Barrer) after the inclusion of ZIF-8 particles with a slight decrease in CO2/CH4selectivity for particle loading more than 15wt. %. Therefore, the membrane with 15wt. % of particles showed the best performance in terms of gas selectivity. This result was due to the aggregation of ZIF-8 particles at particle loading higher than 15wt. %. Chemical analysis indicated an interaction between filler and polymer, and there were increases in the degree of crystallinity after the incorporation of ZIF-8.

Fulltext View|Download
Keywords: Biogas, biomethane, ZIF-8/Polysulfone, mixed matrix membranes, CO2/CH4 gas
Funding: The Ministry of Research and Higher Education of The Government of Indonesia under the scheme of National Research Competitive of Fundamental Research 2020 under contract No. 028/SP-Lit/LPPM-01/Ristek

Article Metrics:

  1. Ahn, J., Chung, W.-J., Pinnau, I., & Guiver, M.D. (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane Science, 314, 123–133. https://doi.org/10.1016/j.memsci.2008.01.031
  2. Anjum, M.W., Vermoortele, F., Khan, A.L., Bueken, B., De Vos, D.E., & Vankelecom, I.F.J., (2015) Modulated UiO-66-based mixed-matrix membranes for CO2 separation, ACS Applied Materials & Interfaces, 7, 25193-201. https://doi.org/10.1021/acsami.5b08964
  3. Aroon, M.A, Ismail, A.F., Matsuura, T., & Montazer-Rahmati, M.M. (2010) Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 75, 229-242. https://doi.org/10.1016/j.seppur.2010.08.023
  4. Castarlenas, S., Téllez, C., & Coronas, J., (2017) Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211. https://doi.org/10.1016/j.memsci.2016.12.041
  5. Cravillon, J., Münzer, S., Lohmeier, S.-J., Feldhoff, A., Huber, K., & Wiebcke, M. (2009) Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials, 21, 1410-1412. https://doi.org/10.1021/cm900166h
  6. Gholami, M., Mohammadi, T., Mosleh, S., & Hemmati, M., (2017) CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles, Chemical Papers, 71, 1839-1853. https://doi.org/10.1007/s11696-017-0177-9
  7. Guo, X., Huang, H., Ban, Y., Yang, Q., Xiao, Y., Li, Y., Yang, W., & Zhong, C., (2015) Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation, Journal of Membrane Science, 478, 130-139. https://doi.org/10.1016/j.memsci.2015.01.007
  8. Julian, H., Sutrisna, P.D., Hakim, A.N., Harsono, H.O., Hugo, Y.A., & Wenten, I G. (2019) Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation. Polymer-Plastics Technology and Materials, 58, 678–689. https://doi.org/10.1080/03602559.2018.1520253
  9. Lin, H. & Yavari, M. (2015) Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. Journal of Membrane Science, 475, 101-109. https://doi.org/10.1016/j.memsci.2014.10.007
  10. Lonita, M., Pandele, A.M., Crica, L.E., & Obreja, A.C. (2015) Preparation and characterization of polysulfone/ammonia-functionalized graphene oxide composite membrane material. High Performance Polymers, 28, 181–188. https://doi.org/10.1177%2F0954008315576233
  11. Mei, X., Yang, S., Lu, P., Zhang, Y., & Zhang, J. (2020) Improving the Selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H2/CO2 Separation. Frontiers in Chemistry, 8, 528. https://doi.org/10.3389/fchem.2020.00528
  12. Nordin, N.A.H.Md., Ismail, A.F., Mustafa, A., Murali, R.S., & Matssuura, T. (2015) Utilising low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 5, 30206-30215. https://doi.org/10.1039/C5RA00567A
  13. Prasetya, N., Himma, N.F., Sutrisna, P.D., & Wenten, I G. (2020) A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 391, 123575. https://doi.org/10.1016/j.cej.2019.123575
  14. Robeson, L.M. (1991) Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62, 165-185. https://doi.org/10.1016/0376-7388(91)80060-J
  15. Robeson, L.M. (2008) The upper bound revisited. Journal of Membrane Science, 320, 390-400. https://doi.org/10.1016/j.memsci.2008.04.030
  16. Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Xamena, F.X.L., & Gascon, J., (2015) Metal–organic framework nanosheets in polymer composite materials for gas separation, Nature Materials, 14, 48-55. https://doi.org/10.1038/nmat4113
  17. Song, Q., Nataraj, S.K., Roussenova, M.V., Tan, J.C., Hughes, D.J., Li, W., Bourgoin, P., Alam, M.A., Cheetham, A.K., Al-Muhtaseb, S.A., & Sivaniah, E. (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 5, 8359-8369. https://doi.org/10.1039/C2EE21996D
  18. Sutrisna, P.D., Hou, J., Li, H., Zhang, Y., & Chen, V. (2017) Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes. Journal of Membrane Science, 524, 266-279. https://doi.org/10.1016/j.memsci.2016.11.048
  19. Sutrisna, P.D., Hou, J., Zulkifli, M.Y., Li, H., Zhang, Y., Liang, W., D’ Alessandro, D.M., & Chen, V., (2018) Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes, Journal of Materials Chemistry A, 6, 918-931. https://doi.org/10.1039/C7TA07512J
  20. Sutrisna, P.D., Prasetya, N., Himma, N.F., & Wenten, I G. (2020a) A mini review and recent outlooks on the synthesis and applications of zeolite imidazolate framework-8 (ZIF-8) membranes on polymeric substrate. Journal of Chemical Technology and Biotechnology, 11, 95, 2767-2774. https://doi.org/10.1002/jctb.6433
  21. Sutrisna, P.D. & Savitri, E. (2020) High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification. Journal of Polymer Engineering, 40 (6), 459-467. https://doi.org/10.1515/polyeng-2019-0280
  22. Sutrisna, P.D., Savitri, E., Gunawan, M.A., Putri, I..H.F., & de Rozari, S.G.B. (2020b) Synthesis, characterization, and gas separation performances of polysulfone and cellulose acetate-based mixed matrix membranes. Polymer-Plastics Technology and Materials, 59, 1300-1307. https://doi.org/10.1080/25740881.2020.1738471
  23. Tanh Jeazet, H.B., Staudt, C., & Janiak. C. (2012) Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 41, 14003-14027. https://doi.org/10.1039/C2DT31550E
  24. Tanh Jeazet, H.B., Sorribas, S., Román‐Marín, J.M., Zornoza, B., Téllez, C., Coronas, J., Janiak, C., (2016) Increased Selectivity in CO2/CH4 Separation with Mixed‐Matrix Membranes of Polysulfone and Mixed‐MOFs MIL‐101 (Cr) and ZIF‐8, European Journal of Inorganic Chemistry, 2016, 4363-4367. https://doi.org/10.1002/ejic.201600190
  25. Tran, T.V., Nguyen, D.T.C., Le, H.T.N., Vo, D-V.N., Doan, V-D., Dinh, V-P., Nguyen, H-T.T., Nguyen, T.D., & Bach, L.G. (2019a) Amino-functionalized MIL-88B(Fe)-based porous carbon for enhanced adsorption toward ciprofloxacin pharmaceutical from aquatic solutions. Comptes Rendus Chimie, 22, 11-12, 804-812. https://doi.org/10.1016/j.crci.2019.09.003
  26. Tran, T.V., Nguyen, D.T.C., Le, H.T.N., Bach, L.G., Vo, D-V.N., Dao, T-U.T., Lim, K.T., & Nguyen, T.D. (2019b) Effect of thermolysis condition on characteristics and nonsteroidal anti-inflammatory drugs (NSAIDs) absorbability of Fe-MIL-88B-derived mesoporous carbons. Journal of Environmental Chemical Engineering, 7, 5, 103356, 1-11. https://doi.org/10.1016/j.jece.2019.103356
  27. Tran, T.V., Nguyen, D.T.C., Nguyen, Nguyen, T.T., Nguyen, C.V., Vo, D-V.N., & Nguyen, T.D. (2020a) High performance of Mn2(BDC)2(DMF)2-derived MnO@C nanocomposite as superior remediator for a series of emergent antibiotics. Journal of Molecular Liquids, 308, 113038, 1-8. https://doi.org/10.1016/j.molliq.2020.113038
  28. Tran, T.V., Nguyen, D.T.C., Nguyen, T.T., Le, H.T.N., Nguyen, C.V., & Nguyen, T.D. (2020b) Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation. Journal of Water Process Engineering, 36, 101319, 1-10. https://doi.org/10.1016/j.jwpe.2020.101319
  29. Tran, T.V., Nguyen, H., Le, P.H.A., Nguyen, D.T.C., Nguyen, T.T., Nguyen, C.V., Vo, D-V.N., & Nguyen, T.D. (2020c) Microwave-assisted solvothermal fabrication of hybrid zeolitic–imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. Journal of Environmental Chemical Engineering, 8, 4, 104189. https://doi.org/10.1016/j.jece.2020.104189
  30. Zhang, C., Lively, R.P., Zhang, K., Johnson, J.R., Karvan, O., & Koros, W.J. (2012) Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. Journal of Physical Chemistry Letters, 3, 2130-2134. https://doi.org/10.1021/jz300855a
  31. Zornoza, B., Martinez-Joaristi, A., Serra-Crespo, P., Tellez, C., Coronas, J., Gascon, J., Kapteijn, F., (2011) Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures, Chemical communications, 47, 9522-9524. https://doi.org/10.1039/C1CC13431K

Last update:

  1. High performance membranes containing zeolitic imidazolate framework‐8 and polysulfone for CO2 removal from CH4

    Christine Wei Mann Ch'ng, Yin Fong Yeong, Norwahyu Jusoh, Nadia Hartini Suhaimi, Li Sze Lai. Journal of Chemical Technology & Biotechnology, 97 (4), 2022. doi: 10.1002/jctb.6990
  2. Investigation of ZIF‐8, amine‐modified ZIF‐8 and polysulfone based mixed matrix membranes for CO2/CH4 separation

    Aditya Jonnalagedda, Bhanu Vardhan Reddy Kuncharam. Journal of Applied Polymer Science, 140 (45), 2023. doi: 10.1002/app.54650
  3. ZIF-8-based dual layer hollow fiber mixed matrix membrane for natural gas purification

    Roziana Kamaludin, Ma Xuefeng, Mohd Hafiz Dzarfan Othman, Aniqa Imtiaz, Mohd Hafiz Puteh, Siti Hamimah Sheikh Abdul Kadir. Fuel, 354 , 2023. doi: 10.1016/j.fuel.2023.129377
  4. High performance membranes containing zeolitic imidazolate framework‐8 and polysulfone for CO 2 removal from CH 4

    Christine Wei Mann Ch'ng, Yin Fong Yeong, Norwahyu Jusoh, Nadia Hartini Suhaimi, Li Sze Lai. Journal of Chemical Technology & Biotechnology, 97 (4), 2022. doi: 10.1002/jctb.6990
  5. An Analysis of the Effect of ZIF-8 Addition on the Separation Properties of Polysulfone at Various Temperatures

    Kseniya Papchenko, Giulio Risaliti, Matteo Ferroni, Meganne Christian, Maria Grazia De Angelis. Membranes, 11 (6), 2021. doi: 10.3390/membranes11060427

Last update: 2024-04-23 10:48:26

No citation recorded.