skip to main content

Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review

1Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein Onn Malaysia, Johor , Malaysia

2Centre for Atmospheric Research, National Space Research and Development Agency, Kogi State University Campus Anyigba, Nigeria

3Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia Johor, Malaysia

4 Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

5 Tuanku Syed Sirajuddin Polytechnic, Perlis, Malaysia

View all affiliations
Received: 30 Oct 2020; Revised: 5 Jan 2021; Accepted: 25 Jan 2021; Available online: 1 Feb 2021; Published: 1 May 2021.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
The development of renewable energy, especially solar, is essential for meeting future energy demands. The use of a wide range of the solar spectrum through the solar cells will increase electricity generation and thereby improve energy supply. However, solar photovoltaics (PV) can only convert a portion of the spectrum into electricity. Excess solar radiation is wasted by heat, which decreases solar PV cells’ efficiency and decreases their life span. Interestingly, thermoelectric generators (TEGs) are bidirectional devices that act as heat engines, converting the excess heat into electrical energy through thermoelectric effects through when integrated with a PV. These generators also enhance device efficiency and reduce the amount of heat that solar cells dissipate. Several experiments have been carried out to improve the hybrid PV-TEG system efficiency, and some are still underway. In the present study, the photovoltaic and thermoelectric theories are reviewed. Furthermore, different hybrid system integration methods and experimental and numerical investigations in improving the efficiency of PV-TEG hybrid systems are also discussed. This paper also assesses the effect of critical parameters of PV-TEG performance and highlights possible future research topics to enhancing the literature on photovoltaic-thermoelectric generator systems.
Fulltext View|Download
Keywords: Photovoltaic; Thermoelectric Generator; Hybrid Photovoltaic-thermoelectric Generator system; Shingle; Sandwich
Funding: Muhammad Akmal, Universiti Tun Hussein Onn Malaysia

Article Metrics:

  1. Acut, R. V. P., Hora, J. A., Gerasta, O. J. L., Zhu, X., & Dutkiewicz, E. (2019). PV-TEG- WiFi multiple sources design energy harvesting system for WSN application. 2019 4th IEEE International Circuits and Systems Symposium, ICSyS 2019, 4–8.
  2. Akashah, W., Jamaludin, W., & Johar, M. A. (2019). Temperature analysis of concrete shingle thermal behavior under feasibility study of concrete shingle as renewable energy. 1–5
  3. Al Musleh, M., Topriska, E. V., Jenkins, D., & Owens, E. (2020). Thermoelectric generator characterisation at the extra-low-temperature difference for building applications in scorching climates: Experimental and numerical study. Energy and Buildings, 225, 110285.
  4. Aljaghtham, M., & Celik, E. (2020). Design optimisation of oil pan thermoelectric generator to recover waste heat from internal combustion engines. Energy, 200, 117547.
  5. Amaral, C., Brandão, C., Sempels, É. V., & Lesage, F. J. (2014). Thermoelectric power enhancement through flow impedance for fixed thermal input conditions. Journal of Power Sources, 272, 672–680.
  6. Aravind, B., Khandelwal, B., Ramakrishna, P. A., & Kumar, S. (2020). Towards the development of a high power density, high efficiency, micropower generator. Applied Energy, 261 (December 2019), 114386.
  7. Babu, C., & Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151(August), 368–385.
  8. Babu, C., & Ponnambalam, P. (2018). The theoretical performance evaluation of hybrid PV-TEG system. Energy Conversion and Management, 173(August), 450–460.
  9. Bjørk, R., & Nielsen, K. K. (2018). The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems. Energy Conversion and Management, 156(September 2017), 264–268.
  10. Cai, Y., Wang, L., Wang, W. W., Liu, D., & Zhao, F. Y. (2020). Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modelling and performance optimisation. Journal of Cleaner Production, 254, 120150.
  11. Cai, Y., Wang, W. W., Liu, C. W., Ding, W. T., Liu, D., & Zhao, F. Y. (2020). Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic, thermoelectric generators for green building operations. Renewable Energy, 147, 1565–1583.
  12. Cai, Y., Wang, Y., Liu, D., & Zhao, F. Y. (2019). Thermoelectric cooling technology applied in electronic devices: An updated review of the parametric investigations and model developments. Applied Thermal Engineering, 148(April 2018), 238–255.
  13. Chávez-Urbiola, E. A., Vorobiev, Y. V., & Bulat, L. P. (2012). Solar hybrid systems with thermoelectric generators. Solar Energy, 86(1), 369–378.
  14. Coskun, C., Toygar, U., Sarpdag, O., & Oktay, Z. (2017). Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. Journal of Cleaner Production, 164, 1474–1485.
  15. Cui, T., Xuan, Y., & Li, Q. (2016). Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials. Energy Conversion and Management, 112, 49–60.
  16. Daghigh, R., & Khaledian, Y. (2018). A novel photovoltaic/thermoelectric collector combined with a dual – Evaporator vapour compression system. Energy Conversion and Management, 158(October 2017), 156–167.
  17. Dallan, B. S., Schumann, J., & Lesage, F. J. (2015). Performance evaluation of a photoelectric-thermoelectric cogeneration hybrid system. Solar Energy, 118, 276–285.
  18. Elsarrag, E., Pernau, H., Heuer, J., Roshan, N., Alhorr, Y., & Bartholomé, K. (2015). Spectrum splitting for efficient utilisation of solar radiation: a novel photovoltaic–thermoelectric power generation system. Renewables: Wind, Water, and Solar, 2(1).
  19. Fisac, M., Villasevil, F. X., & López, A. M. (2014). High-efficiency photovoltaic technology, including thermoelectric generation. Journal of Power Sources, 252, 264–269.
  20. Goldsmid, H. J., Giutronich, J. E., & Kaila, M. M. (1980). Solar thermoelectric generation using bismuth telluride alloys. Solar Energy, 24(5), 435–440.
  21. Grubišić-Čabo, F., Nižetić, S., & Marco, T. G. (2016). Photovoltaic panels: A review of the cooling techniques. Transactions of Famine, 40(June), 63–74
  22. Gu, W., Ma, T., Song, A., Li, M., & Shen, L. (2019). Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Conversion and Management, 198(July), 111800.
  23. Hajji, M., Labrim, H., Benaissa, M., Laazizi, A., Ez-Zahraouy, H., Ntsoenzok, E., Meot, J., & Benyoussef, A. (2017). Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation. Energy Conversion and Management, 136, 184–191.
  24. Hamid Elsheikh, M., Shnawah, D. A., Sabri, M. F. M., Said, S. B. M., Haji Hassan, M., Ali Bashir, M. B., & Mohamad, M. (2014). A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337–355.
  25. Hashim, H., Bomphrey, J. J., & Min, G. (2016). Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renewable Energy, 87, 458–463.
  26. Hoang, T. V., Ifaei, P., Nam, K., Rashidi, J., Hwangbo, S., Oh, J. M., & Yoo, C. K. (2018). Optimal management of a hybrid renewable energy system coupled with a membrane bioreactor using enviro-economic and power pinch analyses for sustainable climate change adaption. Sustainability (Switzerland), 11(1).
  27. Huen, P., & Daoud, W. A. (2017a). Advances in hybrid solar photovoltaic and thermoelectric generators. Renewable and Sustainable Energy Reviews, 72(September), 1295–1302.
  28. Huen, P., & Daoud, W. A. (2017b). Advances in hybrid solar photovoltaic and thermoelectric generators. Renewable and Sustainable Energy Reviews, 72(October), 1295–1302.
  29. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2018). Influence of temperature on electrical characteristics of different photovoltaic module technologies. International Journal of Renewable Energy Development, 7(2), 85–91.
  30. Javed, K., Ashfaq, H., & Singh, R. (2018). An improved MPPT algorithm to minimise transient and steady-state oscillation conditions for small SPV systems. International Journal of Renewable Energy Development, 7(3), 191–197.
  31. Johar, M. A., Yahaya, Z., Marwah, O. M. F., Jamaludin, W. A. W., & Ribuan, M. N. (2017). Feasibility study of thermal electric generator configurations as renewable energy sources. Journal of Physics: Conference Series, 914(1).
  32. Ju, X., Wang, Z., Flamant, G., Li, P., & Zhao, W. (2012). Numerical analysis and optimisation of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Solar Energy, 86(6), 1941–1954.
  33. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and prospects. Renewable and Sustainable Energy Reviews, 82(August 2017), 894–900.
  34. Karami Lakeh, H., Kaatuzian, H., & Hosseini, R. (2019). A parametrical study on the photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell. Renewable Energy, 138, 542–550.
  35. Keser, O. F., Idare, B., Bulat, B., & Okan, A. (2019). The usability of PV-TEG hybrid systems on space platforms. Proceedings of 9th International Conference on Recent Advances in Space Technologies, RAST 2019, 109–115.
  36. Khanmohammadi, S., Musharavati, F., Kizilkan, O., & Duc Nguyen, D. (2020). Proposal of a new parabolic solar collector assisted power-refrigeration system integrated with a thermoelectric generator using 3E analyses: Energy, exergy, and energy-economic. Energy Conversion and Management, 220(June), 113055.
  37. Kil, T. H., Kim, S., Jeong, D. H., Geum, D. M., Lee, S., Jung, S. J., Kim, S., Park, C., Kim, J. S., Baik, J. M., Lee, K. S., Kim, C. Z., Choi, W. J., & Baek, S. H. (2017). A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator. Nano Energy, 37, 242–247.
  38. Krishna Kumar, T. S., Anil Kumar, S., Kodanda Ram, K., Raj Goli, K., & Siva Prasad, V. (2020). Analysis of thermoelectric generators in automobile applications. Materials Today: Proceedings, XXXX.
  39. Kusch-Brandt. (, 2019). Urban renewable energy on the upswing: A spotlight on renewable energy in cities in REN21's "Renewables 2019 Global Status Report." In REN21 RENEWABLES NOW (Vol. 8, Issue 3).
  40. Lamba, R., & Kaushik, S. C. (2016). Modelling and performance analysis of a concentrated photovoltaic-thermoelectric hybrid power generation system. Energy Conversion and Management, 115, 288–298.
  41. Lamba, R., & Kaushik, S. C. (2018). Solar driven concentrated photovoltaic-thermoelectric hybrid system: Numerical analysis and optimisation. Energy Conversion and Management, 170(January), 34–49.
  42. Li, G., Shittu, S., Ma, X., & Zhao, X. (2019). Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric. Energy, 171, 599–610.
  43. Li, G., Shittu, S., Zhou, K., Zhao, X., & Ma, X. (2019). Preliminary experiment on a novel photovoltaic-thermoelectric system in summer. Energy, 188, 116041.
  44. Li, G., Zhao, X., & Ji, J. (2016). Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis. Energy Conversion and Management, 126, 935–943.
  45. Li, J. F., Liu, W. S., Zhao, L. D., & Zhou, M. (2010). High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2(4), 152–158.
  46. Lin, W., Shih, T. M., Zheng, J. C., Zhang, Y., & Chen, J. (2014). Coupling of temperatures and power outputs in hybrid photovoltaic and thermoelectric modules. International Journal of Heat and Mass Transfer, 74, 121–127.
  47. Lineykin, S., Sitbon, M., & Kuperman, A. (2020). Design and optimisation of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines. Applied Energy, November, 116240.
  48. Liu, J., Tang, H., Zhang, D., Jiao, S., Zhou, Z., Zhang, Z., Ling, J., & Zuo, J. (2020). Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management. Energy, 211, 118618.
  49. Looi, K. K., Baheta, A. T., & Habib, K. (2020). Investigation of photovoltaic, thermoelectric air-conditioning system for room application under tropical climate. Journal of Mechanical Science and Technology, 34(5), 2199–2205.
  50. Lund, A., Tian, Y., Darabi, S., & Müller, C. (2020). A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 480(September), 228836.
  51. Luo, Y., Zhang, L., Liu, Z., Yu, J., Xu, X., & Su, X. (2020). Towards net-zero energy building: The application potential and adaptability of a photovoltaic-thermoelectric-battery wall system. Applied Energy, 258(October 2019), 114066.
  52. Mahmoudinezhad, S., Rezania, A., Cotfas, D. T., Cotfas, P. A., & Rosendahl, L. A. (2018). Experimental and numerical investigation of hybrid concentrated photovoltaic – Thermoelectric module under low solar concentration. Energy, 159, 1123–1131.
  53. Makki, A., Omer, S., Su, Y., & Sabir, H. (2016). Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system. Energy Conversion and Management, 112, 274–287.
  54. Mirzakhanyan, A. (2005). Economic and social development. The Armenians: Past and Present in the Making of National Identity, 3(June), 196–210.
  55. Mohammad, A. N. M., Radzi, M. A. M., Azis, N., Shafie, S., & Zainuri, M. A. A. M. (2020). A novel hybrid approach for maximising the extracted photovoltaic power under complex partial shading conditions. Applied Sciences (Switzerland), 12(14), 1–24.
  56. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., & Rosendahl, L. (2020a). Hybrid energy harvesting system to maximise power generation from solar energy. Energy Conversion and Management, 205(December 2019), 112352.
  57. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., & Rosendahl, L. (2020b). Hybrid energy harvesting system to maximise power generation from solar energy. Energy Conversion and Management, 205(November 2019), 112352.
  58. Motiei, P., Yaghoubi, M., & GoshtasbiRad, E. (2019). Transient simulation of a hybrid photovoltaic-thermoelectric system using a phase change material. Sustainable Energy Technologies and Assessments, 34(October 2018), 200–213.
  59. Mustofa, Djafar, Z., Syafaruddin, & Piarah, W. H. (2018). A new hybrid of a photovoltaic-thermoelectric generator with hot mirror as spectrum splitter. Journal of Physical Science, 29, 63–75.
  60. Nižetić, S., Marinić-Kragić, I., Grubišić-Čabo, F., Papadopoulos, A. M., & Xie, G. (2020). Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. Journal of Thermal Analysis and Calorimetry.
  61. Patel, V. R., & Patel, M. C. (2020). Automobile waste heat recovery system using thermoelectric generator. Journal of Science and Technology, 5(3), 58–61.
  62. Premkumar, M., Kumar, C., & Sowmya, R. (2020). Mathematical modelling of solar photovoltaic cell/panel/array based on the physical parameters from the manufacturer's datasheet. International Journal of Renewable Energy Development, 9(1), 7–22.
  63. Rejeb, O., Shittu, S., Ghenai, C., Li, G., Zhao, X., & Bettayeb, M. (2020). Optimisation and performance analysis of a concentrated solar photovoltaic-thermoelectric (CPV-TE) hybrid system. Renewable Energy, 152, 1342–1353.
  64. Rezania, A., & Rosendahl, L. A. (2017). Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Applied Energy, 187, 380–389.
  65. Rodrigo, P. M., Valera, A., Fernández, E. F., & Almonacid, F. M. (2019). Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules. Applied Energy, 238(October 2018), 1150–1162.
  66. Rostamzadeh, H., & Nourani, P. (2019). Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator. Energy, 172, 675–690.
  67. Sahin, A. Z., Ismaila, K. G., Yilbas, B. S., & Al-Sharafi, A. (2020). A review of the performance of photovoltaic/thermoelectric hybrid generators. International Journal of Energy Research, December 2019, 1–30.
  68. Sark, W. G. J. H. M. VA. (2011). Feasibility of photovoltaic - Thermoelectric hybrid modules. Applied Energy, 88(8), 2785–2790.
  69. Shatar, N. M., Rahman, M. A. A., Muhtazaruddin, M. N., Salim, S. A. Z. S., Singh, B., Muhammad-Sukki, F., Bani, N. A., Saudi, A. S. M., & Ardila-Rey, J. A. (2019). Performance evaluation of unconcentrated photovoltaic-thermoelectric generator hybrid system under tropical climate. Sustainability (Switzerland), 11(22).
  70. Shittu, S., Li, G., Akhlaghi, Y. G., Ma, X., Zhao, X., & Ayodele, E. (2019). Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance. Renewable and Sustainable Energy Reviews, 109(March), 24–54.
  71. Shittu, S., Li, G., Zhao, X., Akhlaghi, Y. G., Ma, X., & Yu, M. (2019). Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Conversion and Management, 193(February), 1–14.
  72. Singh, S., Ibeagwu, O. I., & Lamba, R. (2018). Thermodynamic evaluation of irreversibility and optimum performance of a concentrated PV-TEG cogenerated hybrid system. Solar Energy, 170(January), 896–905.
  73. Soltani, S., Kasaeian, A., Sokhansefat, T., & Shafii, M. B. (2018). Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector. Energy Conversion and Management, 159(September 2017), 371–380.
  74. Wan Jamaludin, W. A., Johar, M. A., Faizan Marwah, O. M., & Amin, A. M. (2020). Evaluation of the potential of renewable thermal energy from shingles using a thermoelectric generator (TEG) for residential use application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 50–58.
  75. Wang, N., Han, L., He, H., Park, N. H., & Koumoto, K. (2011). A novel high-performance photovoltaic-thermoelectric hybrid device. Energy and Environmental Science, 4(9), 3676–3679.
  76. Wang, X., Tang, D. S. K., & Henshaw, P. (2020). Mutation particle swarm optimisation (M-PSO) of a thermoelectric generator in a multi-variable space. Energy Conversion and Management, 224(September), 113387.
  77. Wu, S. Y., Zhang, Y. C., Xiao, L., & Shen, Z. G. (2018). Performance comparison investigation on the solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions. International Journal of Sustainable Energy, 37(6), 533–548.
  78. Xu, L., Xiong, Y., Mei, A., Hu, Y., Rong, Y., Zhou, Y., Hu, B., & Han, H. (2018). Efficient Perovskite Photovoltaic-Thermoelectric Hybrid Device. Advanced Energy Materials, 8(13), 1–5.
  79. Yang, Z., Li, W., Chen, X., Su, S., Lin, G., & Chen, J. (2018). Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell-thermoelectric generator system. Energy Conversion and Management, 174(April), 65–71.
  80. Yin, E., & Li, Q. (2020). Unsteady-state performance comparison of the tandem photovoltaic-thermoelectric hybrid system and a conventional photovoltaic system. Solar Energy, 211(September), 147–157.
  81. Yin, E., Li, Q., Li, D., & Xuan, Y. (2019). Experimental investigation on the effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials. Energy, 169, 172–185.
  82. Yin, E., Li, Q., & Xuan, Y. (2018a). One-day performance evaluation of the photovoltaic-thermoelectric hybrid system. Energy, 143, 337–346.
  83. Yin, E., Li, Q., & Xuan, Y. (2018b). Optimal design method for concentrating photovoltaic-thermoelectric hybrid system. Applied Energy, 226(January), 320–329.
  84. Yin, E., Li, Q., & Xuan, Y. (2019). Experimental optimisation of operating conditions for concentrating photovoltaic-thermoelectric hybrid system. Journal of Power Sources, 422(February), 25–32.
  85. Yin, E., Li, Q., & Xuan, Y. (2020). Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration. Renewable Energy, 162, 1828–1841.
  86. Yuan, Z., Liu, K., Xu, Z., Wang, H., Liu, Y., & Tang, X. (2020). Development of micro-radioisotope thermoelectric power supply for deep space exploration distributed wireless sensor network. Advances in Astronautics Science and Technology.
  87. Zhang, Jia, Zhai, H., Wu, Z., Wang, Y., & Xie, H. (2020). Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance. Solar Energy Materials and Solar Cells, 215(June), 110666.
  88. Zhang, Jin, Xuan, Y., & Yang, L. (2014). Performance estimation of photovoltaic-thermoelectric hybrid systems. Energy, 78, 895–903.
  89. Zhou, Z., Yang, J., Jiang, Q., Li, W., Luo, Y., Hou, Y., Zhou, S., & Li, X. (2016). Considerable improvement of device performance by a synergistic effect of Photovoltaics and thermoelectrics. Nano Energy, 22, 120–128.

Last update:

No citation recorded.

Last update:

No citation recorded.