skip to main content

Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan

Energy and Environment Engineering Department, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, 67480, Sindh, Pakistan

Received: 20 Aug 2020; Revised: 12 Oct 2020; Accepted: 21 Oct 2020; Available online: 29 Oct 2020; Published: 1 Feb 2021.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2021 The authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The purpose of this study was to evaluate the influence of module temperature on the efficiency of polycrystalline (p-Si), monocrystalline (m-Si), amorphous (a-Si) and thin film photovoltaic modules at outdoor environment of Nawabshah city Pakistan. The experimental setup was made and installed over the top roof of departmental building. Weather conditions, such as global solar radiation, ambient temperature, wind speed and relative humidity, power output and temperature of all selected four types of module technologies were measured at the site by logging data. Then, the logged data was normalized because of different rated power of photovoltaic modules for comparison purpose. Results revealed that less temperature impact was noted from thin film module and thus it gave more normalized power with 45.6% among other examined modules. On the basis of overall efficiency, p-Si, m-Si, a-Si and thin film modules gave 92.4%, 93.7%, 94.4% and 95.4% yearly average normalized efficiencies respectively. It was found that temperature has more impact on the efficiency of other examined modules compared to thin film modules. Thus, it is concluded from the study that thin film module is better in outdoor environment of Nawabshah
Fulltext View|Download
Keywords: meteorological conditions, photovoltaic module temperature, normalized power output of photovoltaic modules, effects of temperature on efficiency of modules
Funding: Quaid-e-Awam University of Engineering, Science and Technology (QUEST) Nawabshah

Article Metrics:

  1. Abbas, Z., Harijan, K., Hameed, P., & Bhayo, F. (2017). Effect of dust on the performance of photovoltaic system-a case study of Quaid-E-Azam Solar Park Bahawalpur, Pakistan. Noble International Journal of Scientific Research, 1(6), 3-79
  2. Akhmad, K., Kitamura, A., Yamamoto, F., Okamoto, H., Takakura, H., & Hamakawa, Y. (1997). Outdoor performance of amorphous silicon and polycrystalline silicon PV modules. Solar Energy Materials and Solar Cells, 46(3), 209-218; https://doi.org/10.1016/S0927-0248(97)00003-2
  3. Ali, H.M., Zafar, M.A., Bashir, M.A., Nasir, M.A., Ali, M., & Siddiqui, A.M. (2017). Effect of dust deposition on the performance of photovoltaic modules in Taxila, Pakistan. Thermal Science, 21(2), 915-923; https://doi.org/10.2298/TSCI140515046A
  4. Assoa, Y.B., Gaillard, L., Ménézo, C., Negri, N., & Sauzedde, F. (2018). Dynamic prediction of a building integrated photovoltaic system thermal behaviour. Applied Energy, 214, 73-82; https://doi.org/10.1016/j.apenergy.2018.01.078
  5. Bashir, M.A., Ali, H.M., Ali, M., & Siddiqui, A.M. (2015). An experimental investigation of performance of photovoltaic modules in Pakistan. Thermal Science, 19(2), 525-534
  6. Bashir, M.A., Ali, H.M., Khalil, S., Ali, M., & Siddiqui, A.M. (2014). Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan. International Journal of Photoenergy, Article ID 898414, 1-8; http://dx.doi.org/10.1155/2014/898414
  7. Cebecauer, T., Skoczek, A., & Šúri, M. (2011). The effect of solar radiation data types on calculation of tilted and sun tracking solar radiation. In 26th European Photovoltaics Solar Energy Conference, 1-6
  8. Clean Energy Project Analysis (2004). RETScreen Engineering & Cases Text Book- Photovoltaic Project Analysis, CANMET Energy Technology Centre, Canada, 1-46; www.retscreen.net
  9. Coskun, C., Toygar, U., Sarpdag, O., & Oktay, Z. (2017). Sensitivity analysis of implicit correlations for photovoltaic module temperature: a review. Journal of Cleaner Production, 164, 1474-1485; https://doi.org/10.1016/j.jclepro.2017.07.080
  10. Duffie, J.A., & Beckman, W.A. (2013). Solar engineering of thermal processes, Fourth Edition, New York: Wiley
  11. Evans, D.L. (1981). Simplified method for predicting photovoltaic array outpu. Solar Energy, 27(6), 555-560; https://doi.org/10.1016/0038-092X(81)90051-7
  12. Field, H., & Gabor, A.M. (2002). Cell binning method analysis to minimize mismatch losses and performance variation in Si-based modules. Twenty-Ninth IEEE Conference in Photovoltaic Specialists 418-421; DOI: 10.1109/PVSC.2002.1190548
  13. Gaur, A., & Tiwari, G.N. (2014). Performance of a-Si thin film PV modules with and without water flow: an experimental validation. Applied Energy, 128, 184-191; DOI: 10.1109/PVSC.2002.1190861
  14. Harijan, K., Uqaili, M.A., & Mirza, U.K. (2015). Assessment of solar PV power generation potential in Pakistan. Journal of Clean Energy Technologies, 3(1), 54-56
  15. Hasan, M.A., & Sumathy, K. (2010). Photovoltaic thermal module concepts and their performance analysis: a review. Renewable and Sustainable Energy Reviews, 14, 1845-1859; https://doi.org/10.1016/j.rser.2010.03.011
  16. Jakhrani, A.Q., Rigit, A.R.H., Baini, R., Samo, S.R., & Ling, L.P. (2012). Investigation of solar photovoltaic module power output by various models. NED University Journal of Research, 25-35
  17. Jakhrani, A.Q., Samo, S.R., Kamboh, S.A., Labadin, J., & Rigit, A.R.H. (2014). An improved mathematical model for computing power output of solar photovoltaic modules. International Journal of Photoenergy, Article ID 346704, 1-9; https://doi.org/10.1155/2014/346704
  18. Jatoi, A.R., Samo, S.R., & Jakhrani, A.Q. (2016). Influence of ambient temperature and solar radiations on photovoltaic module’s temperature and power output. International Journal of Natural and Engineering Sciences, 10(2), 43-47
  19. Jatoi, A.R., Samo, S.R., & Jakhrani, A.Q. (2018). Influence of temperature on electrical characteristics of different photovoltaic module technologies. International Journal of Renewable Energy Development, 7(2), 85-91; https://doi.org/10.14710/ijred.7.2.85-91
  20. Jatoi, A.R., Samo, S.R., & Jakhrani, A.Q. (2019). An improved empirical model for estimation of temperature effect on performance of photovoltaic modules. International Journal of Photoenergy, Article ID 1681353, 1-16; https://doi.org/10.1155/2019/1681353
  21. Jatoi, A.R., Samo, S.R., & Jakhrani, A.Q. (2019). Comparative study of the electrical characteristics of different photovoltaic modules in outdoor environment. Engineering, Technology & Applied Science Research, 9(5), 4600-4604
  22. Kalogirou, S.A. (2014). Solar energy engineering: processes and systems, Amsterdam: Academic Press: Elsevier
  23. King, D.L., Boyson, W.E., & Kratochvil, J.A. (2002) Analysis of factors influencing the annual energy production of photovoltaic systems, In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 1356-1361; DOI: 10.1109/PVSC.2002.1190861
  24. Lee, W., Kim, Y., Wang, Y., Chang, N., Pedram, M., & Han, S. (2011). Versatile high-fidelity photovoltaic module emulation system. In IEEE/ACM International Symposium on Low Power Electronics and Design, 91-96; 10.1109/ISLPED.2011.5993613
  25. Maghami, M.R., Hizam, H., Gomes, C., Radzi, M.A., Rezadad, M.I. & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: a review. Renewable and Sustainable Energy Reviews, 59, 1307-1316; https://doi.org/10.1016/j.rser.2016.01.044
  26. Malik, A.Q., Ming, L.C., Sheng, T.K., & Blundell, M. (2010). Influence of temperature on the performance of photovoltaic polycrystalline silicon module in the Bruneian climate. ASEAN Journal on Science and Technology for Development, 27(2): 61-72
  27. Malik, P., & Chandel, S.S. (2020). Performance enhancement of multi-crystalline silicon photovoltaic modules using mirror reflectors under western Himalayan climatic conditions. Renewable Energy, 154, 966-975; https://doi.org/10.1016/j.renene.2020.03.048
  28. Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and Sustainable Energy Reviews, 16(5), 2920-2925; https://doi.org/10.1016/j.rser.2012.02.012
  29. Milosavljević, D.D., Pavlović, T.M., & Piršl, D.S. (2015). Performance analysis of a grid-connected solar PV plant in Niš, republic of Serbia. Renewable and Sustainable Energy Reviews, 44, 423-435; https://doi.org/10.1016/j.rser.2014.12.031
  30. Perraki, V., & Kounavis, P. (2016). Effect of temperature and radiation on the parameters of photovoltaic modules. Journal of Renewable and Sustainable Energy, 8(1), 0131021-11; https://doi.org/10.1063/1.4939561
  31. Schwingshackl, C., Petitta, M., Wagner, J.E., Belluardo, G., Moser, D., Castelli, M., Zebisch, M., & Tetzlaff, A. (2013). Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia, 40, 77-86; https://doi.org/10.1016/j.egypro.2013.08.010
  32. Shaari, S., Sopian, K., Amin, N., & Kassim, M.N. (2009). The temperature dependence coefficients of amorphous silicon and crystalline photovoltaic modules using Malaysian field test investigation. American Journal of Applied Sciences, 6(4), 586-593
  33. Skoplaki, E., & Palyvos, J.A. (2009). On the temperature dependence of photovoltaic module electrical performance: a review of efficiency / power correlations. Solar Energy, 83(5), 614-624; https://doi.org/10.1016/j.solener.2008.10.008
  34. Technical brief (2017). The Effect of Irradiance and Temperature on the Performance of PV Modules. Sustainable Technologies Evaluation program (STEP), www.sustainabletechnologies.ca
  35. Tripathi, A.K., Aruna, M., & Murthy, S.N. (2017). Performance evaluation of PV panel under dusty condition. International Journal of Renewable Energy Development, 6(3), 225-233; https://doi.org/10.14710/ijred.6.3.225-233
  36. Wilcox, S.M. (2012). National solar radiation database 1991-2010 update: user's manual, technical report no. NREL/TP-5500-54824”, National Renewable Energy Laboratory, Golden, CO (United States) 1-479; https://www.nrel.gov/docs/fy12osti/54824.pdf
  37. Yusoff, N.F., Zakaria, Z., Zainuddin, H., & Shaari, S. (2016). Operating temperature of photovoltaic module for retrofitted grid-connected photovoltaic system on metal roof. International Journal of Simulation: Systems, Science and Technology, 17, 541-545; DOI: 10.5013/IJSSST.a.17.41.54

Last update:

  1. Improvement Approach for Matching PV-array and Inverter of Grid Connected PV Systems Verified by a Case Study

    Moien A. Omar, Marwan M. Mahmoud. International Journal of Renewable Energy Development, 10 (4), 2021. doi: 10.14710/ijred.2021.36082
  2. Performance comparison of monocrystalline and polycrystalline photovoltaic modules before testing with a cooling system

    Toto Supriyono, Ghazali Omar, Noreffendy Tamaldin, Priyono Soetikno, Muhammad Rizki Sumartono, Angesta Romano, Mohamad Yamin. Cogent Engineering, 11 (1), 2024. doi: 10.1080/23311916.2024.2430426
  3. Modelling П-Shaped Concentrating Optics for Lcpv Solar Cells Using Fresnel Lens

    A. Kapparova, S. Orynbassar, G. Dosymbetova, D. Almen, E. Yershov, A. Saymbetov, M. Nurgaliyev, N. Algazin, A. Sharipbay, D. Zhastalapova. Latvian Journal of Physics and Technical Sciences, 61 (5), 2024. doi: 10.2478/lpts-2024-0039
  4. Outdoor Performance Analysis of Mono-Si and Poly-Si Solar PV Panels in the Philippines

    Jeark A. Principe, Lheander G. Gerna, Ian B. Benitez, Jessa A. Ibañez, Jayson M. Cañete, Candy C. Mercado. 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 2023. doi: 10.1109/ICPSAsia58343.2023.10294441

Last update: 2024-12-26 01:23:15

No citation recorded.