Poly(vinyl alcohol)-Based Anion Exchange Membranes for Alkaline Direct Ethanol Fuel Cells


Article Metrics:
- Bai, H., Li, Z., Zhang, S., Wang, W., & Dong, W. (2018). Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydrate Polymers, 200(August), 468–476. https://doi.org/10.1016/j.carbpol.2018.08.041
- Couture, G., Alaaeddine, A., Boschet, F., & Ameduri, B. (2011). Polymeric materials as anion-exchange membranes for alkaline fuel cells. Progress in Polymer Science, 36(11), 1521–1557. https://doi.org/10.1016/j.progpolymsci.2011.04.004
- Dai, W., Wang, H., Yuan, X., Martin, J. J., & Yang, D. (2009). A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 34(23), 9461–9478. https://doi.org/10.1016/j.ijhydene.2009.09.017
- Du, X., Zhang, H., Yuan, Y., & Wang, Z. (2020). Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy and Environment. https://doi.org/10.1016/j.gee.2020.06.015
- Fang, J., Wu, Y., Zhang, Y., Lyu, M., & Zhao, J. (2015). Novel anion exchange membranes based on pyridinium groups and fluoroacrylate for alkaline anion exchange membrane fuel cells. International Journal of Hydrogen Energy, 40(36), 12392–12399. https://doi.org/10.1016/j.ijhydene.2015.07.074
- Feketeföldi, B., Cermenek, B., Spirk, C., Schenk, A., Grimmer, C., Bodner, M., Koller, M., Ribitsch, V., & Hacker, V. (2016). Chitosan-Based Anion Exchange Membranes for Direct Ethanol Fuel Cells. Journal of Membrane Science & Technology, 06(01), 1–9. https://doi.org/10.4172/2155-9589.1000145
- Hari Gopi, K., & Bhat, S. D. (2018). Anion exchange membrane from polyvinyl alcohol functionalized with quaternary ammonium groups via alkyl spacers. Ionics, 24, 1097–1109. https://doi.org/10.1007/s11581-017-2272-x
- Iravaninia, M., & Rowshanzamir, S. (2015). Polysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells. Journal of Renewable Energy and Environment, 2(2), 59–65
- Jiang, X., Sun, Y., Zhang, H., & Hou, L. (2018). Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan/MoS2composite anion exchange membranes with high selectivity. Carbohydrate Polymers, 180(October 2017), 96–103. https://doi.org/10.1016/j.carbpol.2017.10.023
- Liao, G. M., Yang, C. C., Hu, C. C., Pai, Y. L., & Lue, S. J. (2015). Novel quaternized polyvinyl alcohol/quaternized chitosan nano-composite as an effective hydroxide-conducting electrolyte. Journal of Membrane Science, 485, 17–29. https://doi.org/10.1016/j.memsci.2015.02.043
- Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1–2), 1–35
- Miraftab, M., Saifullah, A. N., & Çay, A. (2015). Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: comparative study on methanol and heat-based crosslinking. Journal of Materials Science, 50(4), 1943–1957. https://doi.org/10.1007/s10853-014-8759-1
- Müller, F., Andretta, R., de Oliveira Meneguzzi, L., & Arthur Ferreira, C. (2017). Development of quaternarized poly(vinyl alcohol) anion-exchange membranes for applications in electrodialysis. Journal of Applied Polymer Science, 134(31), 1–9. https://doi.org/10.1002/app.44946
- Qiao, J., Fu, J., Liu, L., Liu, Y., & Sheng, J. (2012). Highly stable hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) (PVA/PAADDA) for alkaline fuel cells: Effect of cross-linking. International Journal of Hydrogen Energy, 37(5), 4580–4585. https://doi.org/10.1016/j.ijhydene.2011.06.038
- Samsudin, A. M., & Hacker, V. (2019). Preparation and characterization of PVA/PDDA/nano-zirconia composite anion exchange membranes for fuel cells. Polymers, 11(9). https://doi.org/10.3390/polym11091399
- Susanto, H., Samsudin, A. M., Faz, M. W., & Rani, M. P. H. (2016). Impact of post-treatment on the characteristics of electrospun poly (vinyl alcohol)/chitosan nanofibers. AIP Conference Proceedings, 1725. https://doi.org/10.1063/1.4945541
- Wang, Y.-J., Qiao, J., Baker, R., & Zhang, J. (2013). Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society Reviews, 42(13), 5768–5787. https://doi.org/10.1039/c3cs60053j
- Xiong, Y., Fang, J., Zeng, Q. H., & Liu, Q. L. (2008). Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. Journal of Membrane Science, 311(1–2), 319–325. https://doi.org/10.1016/j.memsci.2007.12.029
- Yang, C. C., Chiu, S. J., Chien, W. C., & Chiu, S. S. (2010). Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. Journal of Power Sources, 195(8), 2212–2219. https://doi.org/10.1016/j.jpowsour.2009.10.091
- Yang, C. C., Chiu, S. J., Lee, K. T., Chien, W. C., Lin, C. T., & Huang, C. A. (2008). Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. Journal of Power Sources, 184(1), 44–51. https://doi.org/10.1016/j.jpowsour.2008.06.011
- Yuan, Y., Shen, C., Chen, J., & Ren, X. (2018). Synthesis and characterization of cross-linked quaternized chitosan/poly(diallyldimethylammonium chloride) blend anion-exchange membranes. Ionics, 24(1173), 1180. https://doi.org/10.1007/s11581-017-2280-x
- Zhang, J., Qiao, J., Jiang, G., Liu, L., & Liu, Y. (2013). Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 240, 359–367. https://doi.org/10.1016/j.jpowsour.2013.03.162
- Zhou, T., Wang, M., He, X., & Qiao, J. (2019). Poly(vinyl alcohol)/Poly(diallyldimethylammonium chloride) anion-exchange membrane modified with multiwalled carbon nanotubes for alkaline fuel cells. Journal of Materiomics, 5(2), 286–295. https://doi.org/10.1016/j.jmat.2019.01.012
Last update: 2021-02-26 00:22:11
Last update: 2021-02-26 00:22:12

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.