Energy Efficiency of a Vernacular Building Design and Materials in Hot Arid Climate: Experimental and Numerical Approach


Morocco faces tremendous climate constraints; the climate is hot and dry in most parts of the country, and when selecting an energy-saving approach, the architectural landscape becomes essential.Designer and building professionals seem to have neglected this large-scale integration. Sustainable development programs in terms of sustainable architecture are ongoing in countries around the world. One part of this trend is the growing concern shown in the high environmental efficiency of vernacular architecture. It is within this prescriptive framework that this research study is being conducted, which reveals novel architectural style integrating thermal comfort, energy efficient characteristics, passive solar elements architecture, and construction techniques inspired from the vernacular Ksourian architectural configurations. The goal of the present research study is to identify features of energy efficient vernacular architecture and thermal performances that affect indoor thermal comfort conditions for adaptation to current lifestyles in modern architecture. The key characteristics developed are; built mass structure, building orientation, space planning, availability of sunspace, building techniques, and new coating materials for manufacturing and roofing. The suggested methodology enables to analyze the thermal performance analysis, applying an experimental research using experimental testing measurement and comparative optimization processes for thermal efficiency and comfort evaluation of a traditional vernacular earthen house.Series of experimental thermophysical characterization measurements have been carried out in order to quantify on a real scale the thermophysical properties that characterize the Rissani earth. Thusthermophysical characterization results are operated as input data for the thermal dynamic simulation for the purpose to evaluate thermal performances and comfort under the weather conditions and control natural comfort in both summer and winter, without using heating or cooling systems. Ultimately, the simulations carried out make it possible to identify the optimal orientation, revealing an effective decrease in interior temperatures during summer and providing good thermal comfort in winter.
Article Metrics:
- Abdelsalam, T., & Rihan, G. M. (2013). The impact of sustainability trends on housing design identity of Arab cities. HBRC Journal, 9(2), 159-172
- Degiovanni, A., Laurent, M., & Prost, R. (1979). Mesure automatique de la diffusivité thermique. Revue de Physique Appliquée, 14(11), 927-932
- Alexandroff, G. & Alexandroff, J-M., Architectures and Climates Sun and Natural Energies in the habitat, Paris, France: Berger-Levrault, 1982
- Al-Mukhtar, M., Khattab, S., & Alcover, J. F. (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering geology, 139, 17-27
- Architecture and Energy Efficiency: Ten Cases of Good Practice in Morocco, National School of Architecture, Edition November 2016
- ASHRAE, 2010. ANSI/ASHRAE Standard 55 – Thermal Environmental Conditions for Human Occupancy, Atlanta
- Standard, A. S. T. M. (2013). E1461–13. Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM International, West Conshohocken, PA
- Azhary, K. El, M. Lamrani, S. Raefat, N. Laaroussi, M. Garoum, M. Mansour, and M. Khalfaoui. 2017. “The Improving Energy Efficiency Using Unfired Clay Envelope of Housing Construction in the South Morocco.” Journal of Materials and Environmental Science 8 (10)
- Azhary, K.E., Y. Chihab, M. Mansour, N. Laaroussi, and M. Garoum. 2017. “Energy Efficiency and Thermal Properties of the Composite Material Clay-Straw.” Energy Procedia 141. https://doi.org/10.1016/j.egypro.2017.11.030
- Azhary, Karima El, Saad Raefat, Najma Laaroussi, and Mohammed Garoum. 2018. “Energy Performance and Thermal Proprieties of Three Types of Unfired Clay Bricks.” In Energy Procedia, 147:495–502. ElsevierLtd. https://doi.org/10.1016/j.egypro.2018.07.059
- Azhary, K. E., Ouakarrouch, M., Laaroussi, N., Garoum, M., & Mansour, M. (2020). Impact of Traditional Architecture on the Thermal Performances of Building in South Morocco. In Green Buildings and Renewable Energy (pp. 339-347). Springer, Cham
- Barros, R., Rodrigues, H., Varum, H., Costa, A., & Correia, M. (2017). Seismic Analysis of a Portuguese Vernacular Building. Journal of Architectural Engineering, 24(1), 05017010.” n.d
- Bayoumi, O. A. M. (2018). Nubian Vernacular architecture & contemporary Aswan buildings’ enhancement. Alexandria Engineering Journal, 57(2), 875-883
- Borong, L., Gang, T., Peng, W., Ling, S., Yingxin, Z., & Guangkui, Z. (2004). Study on the thermal performance of the Chinese traditional vernacular dwellings in Summer. Energy and Buildings, 36(1), 73-79
- Delaigue, Marie-Christine; El Hraiki, Rahma (2015), Mujeres y Casas En El Medio Rural Del Norte de Marruecos. Una Aproximación Etnografica. In Diez Jorge, M. Elena;Navarro Palazón, Julio (Ed.), ”El Espacio Doméstico En La Península Ibérica Medieval. Socie
- Dietel, J., Warr, L. N., Bertmer, M., Steudel, A., Grathoff, G. H., & Emmerich, K. (2017). The importance of specific surface area in the geopolymerization of heated illitic clay. Applied Clay Science, 139, 99-107
- Djeradi M. A. (2012), Ksourian Architecture (Algeria) Between Signs and Significance Vernacular Architecture, Tome 36-37
- E.N. ISO, 8302 (1991) Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties-Guarded Hot Plate Apparatus, Int. Organ. Stand. Geneva, Switz. (1991)
- Fernandes, J. E. P., Debaieh, M., Mateus, R., Silva, S. M., Bragança, L., & Gervásio, H. M. S. (2018). Thermal Performance and Comfort of Vernacular Earthen Buildings in Egypt and Portugal
- Givoni, B. Man, Architecture and the Climate, Paris, France: Moniteur Editions 1978
- Global Weather Database, Meteonorm Software, Version 7, 1991-2010, CSTB Edition
- Guno, C. S., Agaton, C. B., Villanueva, R. O., & Villanueva, R. O. Optimal Investment Strategy for Solar PV Integration in Residential Buildings: A Case Study in The Philippines. International Journal of Renewable Energy Development, 10(1), 79-89
- Hall, M., & Allinson, D. (2009). Analysis of the hygrothermal functional properties of stabilised rammed earth materials. Building and Environment, 44(9), 1935-1942
- Herrero, S., Mayor, P., Hernández-Olivares, F. (2013). Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster-rubber mortars. Materials and Design, 47, 633-642,
- Hyde R, 2008. Bioclimatic Housing: Innovative Designs for Warm Climates. London : Earthscan. Imesch T, Thomann HU, 1991. Timimoun, Habitat Du Sahara. Paris : Institut of Arabic world
- Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313
- Laaroussi, N., El Azhary, K., Garoum, M., Raefat, S., & Feiz, A. (2016, July). Semi-empirical models for the estimation of global solar irradiance measurements in Morocco. In 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC) (pp. 1-6). IEEE
- Liébard A., Ménard J.-P. et Piro P. (2007), Le Grand Livre De L'Habitat Solaire: 110 Achievements In France Sustainable Development Within Everybody's Reach, Observ'ER, LE MONITEUR, Gaz de France, Paris,
- Mecca S., (2006), Architecture in the Drâa Valley, Morocco, First International Congress on Oasis and Sustainable Tourism, University of Alicante, Elche
- Mecca S., Tonietti U., Rovero L, (2007), Knowledge in Construction and Cultural Diversity of Earthen Architecture in Tamnougalt (Zagora, Maroc), RIPAM2, University Cadi-Ayyad, Marrakech Morocco
- Mecca S. and Biondi B. Eds, (2005), Architectural Heritage and Sustainable Development of Small and Medium Cities in South Mediterranean Regions, Proceedings of First International Research Seminar, Forum UNESCO – University and Heritage, Florence, 27th-2
- Mohsen H.Aboul Naga, Yasser H.El Sheshtawy, Environmental Sustainability Assessment of Buildings in Hot Climates: The Case of the UAE, Renewable Energy, Volume 24, Issues 3–4, November 2001, Pages 553-563
- "NF P 75 101: 'Norme Française: Isolants Thermiques Destinés au Bâtiment', October 1983
- Ouakarrouch, M., El Azhary, K., Mansour, M., Laaroussi, N., & Garoum, M. (2020). Thermal study of clay bricks reinforced by sisal-fibers used in construction in South of Morocco. Energy Reports, 6, 81-88
- Ouakarrouch, M., Garoum, M., & Laaroussi, N. (2019, November). Experimental Study of Thermophysical Proprieties of Wooden Materials used in Building Construction. In 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-5). IEEE,
- Ouakarrouch, M., El Azhary, K., Laaroussi, N., Garoum, M., & Kifani-Sahban, F. (2020). Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste. Thermal Science and Engineering Progress, 19, 100642
- Ouakarrouch, M., Kifani-Sahban, F., Laaroussi, N., Garoum, M., & Layakhaf, S. M. (2018, December). Thermal Insulation and Operation by Photovoltaic Solar Energy of a Bioreactor. In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-5). IEEE
- Raefat, S., Garoum, M., Laaroussi, N., Thiam, M., & Amarray, K. (2017, July). Thermal diffusivity and adiabatic limit temperature characterization of consolidate granular expanded perlite using the flash method. In IOP Conference Series: Materials Science and Engineering (Vol. 222, No. 1, p. 012004). IOP Publishing
- Ravéreau, A., From Local to l’universal, Paris, France: Linteau Edition 2007
- RPCT 2011: Paraseismic Regulation of Earthen Buildings (MAROC)
- Sayigh, A. (2013). Sustainability, energy and architecture: Case studies in realizing green buildings. Academic Press
- Schatz, J. F., & Simmons, G. (1972). Thermal conductivity of earth materials at high temperatures. Journal of Geophysical Research, 77(35), 6966-6983
- Terrasse H., Berber Kasbahs of the Atlas and Oasis, Editions of Horizons France, Paris, 1938
- Thermal Regulation of Construction in Morocco, RTCM, The Moroccan Agency for Energy Efficiency – AMEE, 2012, Moroccan Agency for Energy Efficiency (AMEE)
- Vares, S., Savolainen, P., Häkkinen, T., Shemeikka, J., Huttunen, M., & Zubillaga, L. (2020, November). Concepts and type building for carbon neutral construction in arctic Finland based on tradition. In IOP Conference Series: Earth and Environmental Science (Vol. 588, No. 2, p. 022032). IOP Publishing
- W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys. 32 (1961) 1679–1684
- Jannot, Y., Degiovanni, A., Félix, V., & Bal, H. (2011). Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method. Measurement Science and Technology, 22(3), 035705
- Zune, M., Pantua, C. A. J., Rodrigues, L., & Gillott, M. (2020). A review of traditional multistage roofs design and performance in vernacular buildings in Myanmar. Sustainable Cities and Society, 60, 102240
Last update: 2021-02-26 01:05:56
Last update: 2021-02-26 01:05:59

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.