Generating Organic Liquid Products from Catalytic Cracking of Used Cooking Oil over Mechanically Mixed Catalysts


Article Metrics:
- Ahmad, M., Farhana, R., Raman, A.A.A., Bhargava, S.K., 2016. Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline. Energy Conversion and Management 119, 352–360. https://doi.org/10.1016/j.enconman.2016.04.069
- Al Sharifi, M., Znad, H., 2019. Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst. Renewable Energy, https://doi.org/10.1016/j.renene.2019.11.071
- Anderson, M., Whitcomb, P., 2001. Design of Experiments: Statistical Principles of Research Design and Analysis. Technometrics 43, 236–237. https://doi.org/10.1198/tech.2001.s589
- Benavides, P.T., Cronauer, D.C., Adom, F., Wang, Z., Dunn, J.B., 2017. The influence of catalysts on biofuel life cycle analysis (LCA). Sustainable Materials and Technologies 11, 53–59. https://doi.org/10.1016/j.susmat.2017.01.002
- Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., Cen, K., 2019. Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons. International Journal of Hydrogen Energy 44, 1650–1658. https://doi.org/10.1016/j.ijhydene.2018.11.110
- Corma, A., Huber, G., Sauvanaud, L., Oconnor, P., 2007. Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis 247, 307–327. https://doi.org/10.1016/j.jcat.2007.01.023
- Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., Ishizaki, A., 2001. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry 37, 65–71. https://doi.org/10.1016/S0032-9592(01)00178-9
- Emori, E.Y., Hirashima, F.H., Zandonai, C.H., Ortiz-Bravo, C.A., Fernandes-Machado, N.R.C., Olsen-Scaliante, M.H.N., 2017. Catalytic cracking of soybean oil using ZSM5 zeolite. Catalysis Today 279, 168–176. https://doi.org/10.1016/j.cattod.2016.05.052
- Hosseinpour, N., Mortazavi, Y., Bazyari, A., Khodadadi, A.A., 2009. Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Processing Technology 90, 171–179. https://doi.org/10.1016/j.fuproc.2008.08.013
- Ibrahim, S.H., Hamza, E., 2017. Optimization of lipid extraction from municipal scum sludge for biodiesel production using statistical approach. International Journal of Renewable Energy Development 6, 171. https://doi.org/10.14710/ijred.6.2.171-179
- Ibarra, Á., Hita, I., Azkoiti, M.J., Arandes, J.M., Bilbao, J., 2019. Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. Journal of Industrial and Engineering Chemistry 78, 372–382. https://doi.org/10.1016/j.jiec.2019.05.032
- Jaroenkhasemmeesuk, C., Diego, M.E., Tippayawong, N., Ingham, D.B., Pourkashanian, M., 2018. Simulation analysis of the catalytic cracking process of biomass pyrolysis oil with mixed catalysts: Optimization using the simplex lattice design. Int J Energy Res 42, 2983–2996. https://doi.org/10.1002/er.4023
- Kadarwati, S., 2015. Polymerisation and coke formation during mild hydrotreatment of bio-oil over pre-sulphided co-Mo/γ-Al2O3 catalyst. International Journal of Renewable Energy Development 4, 32–38. https://doi.org/10.14710/ijred.4.1.32-38
- Karmaker, A.K., Rahman, Md.M., Hossain, Md.A., Ahmed, Md.R., 2020. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. Journal of Cleaner Production 244, 118645. https://doi.org/10.1016/j.jclepro.2019.118645
- Khammasan T., Tippayawong N., 2018, Light liquid fuel from catalytic cracking of beef tallow with ZSM-5, International Journal of Renewable Energy Research, 8, 407–413
- Khuenkaeo, N., Tippayawong, N., 2018. Bio-oil production from ablative pyrolysis of corncob pellets in a rotating Blade Reactor. IOP Conf. Ser.: Earth Environ. Sci. 159, 012037. https://doi.org/10.1088/1755-1315/159/1/012037
- Khuenkaeo, N., Tippayawong, N., 2020. Production and characterization of bio-oil and bio-char from ablative pyrolysis of lignocellulosic biomass residues. Chemical Engineering Communications, 207(2), 153-160
- Kim, S., Sasmaz, E., Pogaku, R., Lauterbach, J., 2020. Effects of reaction conditions and organic sulfur compounds on coke formation and HZSM-5 catalyst performance during jet propellant fuel (JP-8) cracking. Fuel 259, 116240. https://doi.org/10.1016/j.fuel.2019.116240
- Li, C., Ma, J., Xiao, Z., Hector, S.B., Liu, R., Zuo, S., Xie, X., Zhang, A., Wu, H., Liu, Q., 2018. Catalytic cracking of Swida wilsoniana oil for hydrocarbon biofuel over Cu-modified ZSM-5 zeolite. Fuel 218, 59–66. https://doi.org/10.1016/j.fuel.2018.01.026
- Li, L., Yuan, X., Wang, Y., Sun, B., Wu, D., 2019. A two-layer fuzzy synthetic strategy for operational performance assessment of an industrial hydrocracking process. Control Engineering Practice 93, 104187. https://doi.org/10.1016/j.conengprac.2019.104187
- Maher, K.D., Bressler, D.C., 2007. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology 98, 2351–2368. https://doi.org/10.1016/j.biortech.2006.10.025
- Mante O.D., Agblevor F.A., Oyama S.T., McClung R., 2014, Catalytic pyrolysis with ZSM-5 based additive as co-catalyst to Y-zeolite in two reactor configurations, Fuel, 117, 649–659
- Nguyen, H.C., Nguyen, M.L., Wang, F.-M., Liang, S.-H., Bui, T.L., Ha, H.H., Su, C.-H., 2019. Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis. Bioresource Technology 289, 121770. https://doi.org/10.1016/j.biortech.2019.121770
- Pascoal, C.V.P., Oliveira, A.L.L., Figueiredo, D.D., Assunção, J.C.C., 2020. Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis. Renewable Energy 147, 1815–1824. https://doi.org/10.1016/j.renene.2019.09.122
- Prasertpong, P., Tippayawong, N., 2019. Upgrading of biomass pyrolysis oil model compound via esterification: Kinetic study using heteropoly acid. Energy Procedia 160, 253–259. https://doi.org/10.1016/j.egypro.2019.02.144
- Prasertpong, P., Jaroenkhasemmeesuk, C., Regalbuto, J.R., Lipp, J., Tippayawong, N., 2020. Optimization of process variables for esterification of bio-oil model compounds by a heteropolyacid catalyst. Energy Reports 6, 1–9. https://doi.org/10.1016/j.egyr.2019.11.026
- Rathore, V., Newalkar, B.L., Badoni, R.P., 2016. Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy for Sustainable Development 31, 24–49. https://doi.org/10.1016/j.esd.2015.11.003
- Rofiqulislam, M., Haniu, H., Rafiqulalambeg, M., 2008. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel 87, 3112–3122. https://doi.org/10.1016/j.fuel.2008.04.036
- Schipper, P.H., Dwyer, F.G., Sparrell, P.T., Mizrahi, S., Herbst, J.A., 1988. Zeolite ZSM-5 in Fluid Catalytic Cracking: Performance, Benefits, and Applications, in: Occelli, M.L. (Ed.), Fluid Catalytic Cracking. American Chemical Society, Washington, DC, pp. 64–86. https://doi.org/10.1021/bk-1988-0375.ch005
- Suwannapa, P., Tippayawong, N., 2017. Optimization of two-step biodiesel production from beef tallow with microwave heating. Chemical Engineering Communications 204(5), 618-624
- Syah Putra, R., Shabur Juliantoa, T., Hartono, P., Dyah Puspitasaria, R., Kurniawan, A., 2014. Pre-treatment of used-cooking oil as feed stocks of biodiesel production by using activated carbon and clay minerals. International Journal of Renewable Energy Development 3, 33–35. https://doi.org/10.14710/ijred.3.1.33-35
- US EIA, 1997. Petroleum product supplied (consumption). Retrieved on November 11, 2019, from: https://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_a.htm
- Wu, Y., Wang, X., Song, Q., Zhao, L., Su, H., Li, H., Zeng, X., Zhao, D., Xu, J., 2018. The effect of temperature and pressure on n-heptane thermal cracking in regenerative cooling channel. Combustion and Flame 194, 233–244. https://doi.org/10.1016/j.combustflame.2018.04.036
- Zhao, X., Wei, L., Julson, J., Qiao, Q., Dubey, A., Anderson, G., 2015. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. New Biotechnology 32, 300–312. https://doi.org/10.1016/j.nbt.2015.01.004
- Zheng, Q., Huo, L., Li, H., Mi, S., Li, X., Zhu, X., Deng, X., Shen, B., 2017. Exploring structural features of USY zeolite in the catalytic cracking of Jatropha Curcas L. seed oil towards higher gasoline/diesel yield and lower CO2 emission. Fuel 202, 563–571. https://doi.org/10.1016/j.fuel.2017.04.073
Last update: 2021-02-26 14:22:26
Last update: 2021-02-26 14:22:26
-
An experimental study on the performance characteristics of a diesel engine fueled with ulsd-biodiesel blends
Tran V.D.. International Journal of Renewable Energy Development, 10 (2), 2020. doi: 10.14710/ijred.2021.34022

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.