Analytical and Numerical Solution for H-type Darrieus Wind Turbine Performance at the Tip Speed Ratio of Below One


Article Metrics:
- Abdalrahman, G., Melek, W., & Lien, F. S. (2017). Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT). Renewable Energy, 114, 1353β1362. https://doi.org/10.1016/j.renene.2017.07.068
- Abraham, J. P., Plourde, B. D., Mowry, G. S., Minkowycz, W. J., & Sparrow, E. M. (2012). Summary of Savonius wind turbine development and future applications for small-scale power generation. Journal of Renewable and Sustainable Energy, 4(4). https://doi.org/10.1063/1.4747822
- Ahmadi-Baloutaki, M. (2016). Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines. ProQuest Dissertations and Theses, 196. Retrieved from https://search.proquest.com/docview/1767790874?accountid=15300%0Ahttp://resolver.ebscohost.com/openurl?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&rfr_id=info:sid/Matericals+Science+%26+Engineering+Dissertations&rft_val_fmt=info:ofi/fmt:kev:mtx:dissert
- Alam, F., & Golde, S. (2013). An Aerodynamic Study of a Micro Scale Vertical Axis Wind Turbine. Procedia Engineering, 56, 568β572. https://doi.org/10.1016/j.proeng.2013.03.161
- Aslam Bhutta, M. M., Hayat, N., Bashir, M. H., Khan, A. R., Ahmad, K. N., & Khan, S. (2012). CFD applications in various heat exchangers design: A review. Applied Thermal Engineering, 32, 1β12. https://doi.org/10.1016/j.applthermaleng.2011.09.001
- Beri, H., & Yao, Y. (2011). Effect of Camber Airfoil on Self-Starting of VAWT. Journal of Environmental Science and Technology, 302β312
- Chaiyanupong, J., & Chitsomboon, T. (2018). Effects of turbulence models and grid densities on computational accuracy of flows over a vertical axis wind turbine. International Journal of Renewable Energy Development, 7(3), 213β222. https://doi.org/10.14710/ijred.7.3.213-222
- Cheng, Q., Liu, X., Ji, H. S., Kim, K. C., & Yang, B. (2017). Aerodynamic Analysis of a Helical Vertical Axis Wind Turbine. Energies, 10(575), 1β16
- Darrieus GJM. (1931). Turbine Having its rotating shaft transverse to the flow of the current
- Delafin, P. L., Nishino, T., Wang, L., & Kolios, A. (2016). Effect of the number of blades and solidity on the performance of a vertical axis wind turbine. Journal of Physics: Conference Series, 753(2). https://doi.org/10.1088/1742-6596/753/2/022033
- Dossena, V., Persico, G., Paradiso, B., Battisti, L., DellβAnna, S., Brighenti, A., & Benini, E. (2015). An experimental study of the aerodynamics and performance of a vertical axis wind turbine in a confined and unconfined environment. Journal of Energy Resources Technology, Transactions of the ASME, 137(5). https://doi.org/10.1115/1.4030448
- Dumitrescu, H., Dumitrache, A., Popescu, C. L., Popescu, M. O., FrunzulicΔ, F., & CrΔciunescu, A. (2014). Wind tunnel experiments on vertical-axis wind turbines with straight blades. Renewable Energy and Power Quality Journal, 1(12), 1001β1004. https://doi.org/10.24084/repqj12.562
- Eboibi, O., Danao, L. A. M., & Howell, R. J. (2016). Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers. Renewable Energy, 92, 474β483. https://doi.org/10.1016/j.renene.2016.02.028
- Elkhoury, M., Kiwata, T., & Aoun, E. (2015). Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics, 139, 111β123. https://doi.org/10.1016/j.jweia.2015.01.004
- Hara, Y., Hara, K., & Hayashi, T. (2012). Moment of Inertia Dependence of Vertical Axis Wind Turbines in Pulsating Winds. International Journal of Rotating Machinery, 2012, 1β12. https://doi.org/10.1155/2012/910940
- Islam, M., Fartaj, A., & Carriveau, R. (2011). Design analysis of a smaller-capacity straight-bladed VAWT with an asymmetric airfoil. International Journal of Sustainable Energy, 30(3), 179β192. https://doi.org/10.1080/1478646X.2010.509496
- Kirke, B. K., & Paillard, B. (2017). Predicted and measured performance of a vertical axis wind turbine with passive variable pitch compared to fixed pitch. Wind Engineering, 41(1), 74β90. https://doi.org/10.1177/0309524X16677884
- Letcher, T. M. (Trevor M. . (2017). Wind energy engineering : a handbook for onshore and offshore wind turbines. Retrieved from https://books.google.com/books/about/Wind_Energy_Engineering.html?id=hRZ2DQAAQBAJ&source=kp_cover
- Liu, Q., Miao, W., Li, C., Hao, W., Zhu, H., & Deng, Y. (2019). Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT. Energy, 189(xxxx), 116271. https://doi.org/10.1016/j.energy.2019.116271
- Oliveira, A. T. De, Carolina, A., & Maia, R. (2017). Analysis of a vertical axis wind turbine with blade pitch control analysis of a vertical-axis wind turbine with blade pitch control mechanism by Kimberlly Costa Carvalho , Rafael Alves da Silva Oriented by : Dietmar Rempfer Final Report for Summer Researc. (July 2016)
- Paraschivoiu, I. (1988). Double-multiple streamtube model for studying vertical-axis wind turbines. Journal of Propulsion and Power, 4(4), 370β377. https://doi.org/10.2514/3.23076
- Rezaeiha, A., Kalkman, I., & Blocken, B. (2017). Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy, 197, 132β150. https://doi.org/10.1016/j.apenergy.2017.03.128
- Rezaeiha, A., Montazeri, H., & Blocken, B. (2018). Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades. Energy, 165, 1129β1148. https://doi.org/10.1016/j.energy.2018.09.192
- Roy, S., Branger, H., Luneau, C., Bourras, D., & Paillard, B. (2017). Design of an offshore three-bladed vertical axis wind turbine for wind tunnel experiments. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 10(June). https://doi.org/10.1115/OMAE2017-61512
- Saber, H. E., Attia, E. M., & El Gamal, H. A. (2015). Analysis of Straight Bladed Vertical Axis Wind Turbine. International Journal of Engineering Research and Technology, 4(07), 714β723
- Saeidi, D., Sedaghat, A., Alamdari, P., & Alemrajabi, A. A. (2013). Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Applied Energy, 101, 765β775. https://doi.org/10.1016/j.apenergy.2012.07.047
- Sagharichi, A., Maghrebi, M. J., & Arabgolarcheh, A. (2016). Variable pitch blades: An approach for improving performance of Darrieus wind turbine. Journal of Renewable and Sustainable Energy, 8(5). https://doi.org/10.1063/1.4964310
- Singh, M. A., Biswas, A., & Misra, R. D. (2015). Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renewable Energy, 76, 381β387. https://doi.org/10.1016/j.renene.2014.11.027
- Staelens, Y., Saeed, F., & Paraschivoiu, I. (2003). A straight-bladed variable-pitch VAWT concept for improved power generation. ASME 2003 Wind Energy Symposium, WIND2003, 146β154. https://doi.org/10.1115/wind2003-524
- Sumantraa, R. B., Chandramouli, S., Premsai, T. P., Prithviraj, P., Vivek, M., & Kishore, V. R. (2014). Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine. International Journal of Renewable Energy Research, 4(4), 929β935. https://doi.org/10.20508/ijrer.50726
- Sun, X., Zhu, J., Hanif, A., Li, Z., & Sun, G. (2020). Effects of blade shape and its corresponding moment of inertia on self-starting and power extraction performance of the novel bowl-shaped floating straight-bladed vertical axis wind turbine. Sustainable Energy Technologies and Assessments, 38(January), 100648. https://doi.org/10.1016/j.seta.2020.100648
- Wu, Z., Bangga, G., & Cao, Y. (2019). Effects of lateral wind gusts on vertical axis wind turbines. Energy, 167, 1212β1223. https://doi.org/10.1016/j.energy.2018.11.074
Last update: 2021-02-26 15:17:51
Last update: 2021-02-26 15:17:52

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.Β Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options:Β Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made.Β If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.