skip to main content

Design and Performance Evaluation of a Multi-Temperature Flat Plate Solar Collector

1Department of Mechanical Material and Manufacturing Engineering, University of Nottingham, Malaysia

2Department of Mechanical Engineering, Federal Polytechnic Mubi, Adamawa State, Nigeria

Received: 30 Sep 2020; Revised: 27 Jan 2021; Accepted: 25 Feb 2021; Published: 1 Aug 2021; Available online: 12 Mar 2021.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The standard flat-plate solar collector utilises a single copper tube to remove the absorber plate’s heat. This type of collector’s primary purpose is to provide hot water for a single application. Hot water can be required for different applications at different temperatures. Besides, using the standard collector’s configuration may increase thermal demand and increase the collector’s size. Therefore, this study proposes a novel solar water heating configuration that uses three in-line fluid passages. The goal is to design a single collector that provides hot water for various uses: Sterilisation, washing, and postnatal care. Thus, the proposed system was modelled, and a numerical simulation conducted. This analysis compares the proposed system’s output and the standard collector’s output. The results showed that the thermal load demand was reduced by 27% when the hot water demand for these services was generated using three separate tanks. The serpentine collector’s efficiency with three fluid passages is increased by 20% compared to the traditional serpentine collector. The thermal energy delivered to meet load was 30% higher than that of the traditional serpentine system. The experimental and simulated system performance is in near agreement with an average percentage error Cv(RMSE) of 8.75% and confidence level NSE of about 87%. Since the proposed serpentine collector has a higher overall thermal production, it is recommended for use with hot water, which has to be heated to different temperatures.

Fulltext View|Download
Keywords: Solar water heater; serpentine collector;TRNSYS simulation; collector efficiency and solar fraction

Article Metrics:

  1. Agbo, S.N and Unachukwu, G. . (2006). Performance Evaluation and Optimisation of the NCERD Thermosyphon Solar Water Heater. World Renewable Energy Congress, 19–25. Florence, Italy
  2. Anagnostopoulos, A., Sebastia-Saez, D., Campbell, A. N., & Arellano-Garcia, H. (2020). Finite element modelling of the thermal performance of salinity gradient solar ponds. Energy, 203, 117861. https://doi.org/10.1016/j.energy.2020.117861
  3. Ayompe, L. M., & Duffy, A. (2013). Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate. Applied Thermal Engineering, 58(1–2), 447–454. https://doi.org/10.1016/j.applthermaleng.2013.04.062
  4. Backer, H. D. (1996). Effect of Heat on the Sterilisation of Artificially Contaminated Water. Journal of Travel Medicine, 3, 1–4. Retrieved from https://academic.oup.com/jtm/article/3/1/1/180439
  5. Brownson, J. R. S. (2014). Solar Energy Conversion Systems (First edit; Elsevier, ed.). Waltham, USA: Academic Press imprint of Elsevier
  6. Buckles, W.E., Klein, S. . (1980). Analysis of solar domestic hot water heaters. Solar Energy, 25(5), 417–424
  7. Christiansen, N., Kaltschmitt, M., Dzukowski, F., & Isensee, F. (2015). Electricity consumption of medical plug loads in hospital laboratories: Identification, evaluation, prediction and verification. Energy and Buildings, 107, 392–406. https://doi.org/10.1016/j.enbuild.2015.08.022
  8. Costa, L., & Bracco, P. (2009). Mechanisms of Crosslinking, Oxidative Degradation and Stabilization of UHMWPE. In UHMWPE Biomaterials Handbook (pp. 309–323). https://doi.org/10.1016/B978-0-12-374721-1.00021-3
  9. Deng, J., O’Donovan, T. S., Tian, Z., King, J., & Speake, S. (2019). Thermal performance predictions and tests of a novel type of flat plate solar thermal collectors by integrating with a freeze tolerance solution. Energy Conversion and Management, 198. https://doi.org/10.1016/j.enconman.2019.111784
  10. Diez, F. J., Navas-Gracia, L. M., Martínez-Rodríguez, A., Correa-Guimaraes, A., & Chico-Santamarta, L. (2019). Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates. Solar Energy, 188, 1320–1331. https://doi.org/10.1016/j.solener.2019.07.022
  11. Duffie, J. A., & Beckman, W. A. (2006). Solar engineering of thermal processes. In Intersciences Publication, USA (4th ed.). https://doi.org/April 15, 2013
  12. Eltaweel, M., Abdel-Rehim, A. A., & Hussien, H. (2020). Indirect thermosiphon flat-plate solar collector performance based on twisted tube design heat exchanger filled with nanofluid. International Journal of Energy Research, 44(6), 4269–4278. https://doi.org/10.1002/er.5146
  13. “Energy Commission of Nigeria.” (2017). National Workshop on Review of Renewable Energy Master Plan. In National Workshop on Review of Renewable Energy Master Plan Abuja. Abuja: Energy Commission of Nigeria
  14. Fawaz, H. E., Badawy, M. T. S., Abd Rabbo, M. F., & Elfeky, A. (2018). Numerical investigation of fully developed periodic turbulent flow in a square channel fitted with 45° in-line V-baffle turbulators pointing upstream. Alexandria Engineering Journal, 57(2), 633–642. https://doi.org/10.1016/j.aej.2017.02.020
  15. Fuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81(February), 1530–1547. https://doi.org/10.1016/j.rser.2017.05.229
  16. Gerg, H.P. and Prakash, J. (2014). No Solar Energy Fundamentals and Applications. New Delhi: Tata McGraw-hill Publishing Company Ltd
  17. Govind N. K, Shireesh B. K, S. B. (2006). Determination of design space and optimisation of solar water heating systems. Solar Energy, 32, 263–276
  18. Govind N.K., Shireesh B.K., S. B. (2008). Design of solar thermal systems utilising pressurised hot water. Solar Energy, 82, 686–699
  19. Honisch, M., Stamminger, R., & Bockmühl, D. P. (2014). Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. Journal of Applied Microbiology, 117(6), 1787–1797. https://doi.org/10.1111/jam.12647
  20. Hossain, M. S., Pandey, A. K., Tunio, M. A., Selvaraj, J., Hoque, K. E., & Rahim, N. A. (2016). Thermal and economic analysis of low-cost modified flat-plate solar water heater with parallel two-side serpentine flow. Journal of Thermal Analysis and Calorimetry, 123(1), 793–806. https://doi.org/10.1007/s10973-015-4883-7
  21. Kalogirou, S. (2009). Solar energy engineering : processes and systems. In Academic Press publications. https://doi.org/10.1016/B978-0-12-374501-9.00014-5
  22. Kalogirou, S. A. (2014). Designing and Modeling Solar Energy Systems. In Solar Energy Engineering (2nd edition, pp. 583–689). Oxford OX5 1GB, UK: Academic Press publications
  23. publications
  24. Kiliç, F., Menlik, T., & Sözen, A. (2018). Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Solar Energy, 164(April 2017), 101–108. https://doi.org/10.1016/j.solener.2018.02.002
  25. Li, Z., Chen, H., Xu, Y., & Tiow Ooi, K. (2020). Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors. Energy Conversion and Management, 215. https://doi.org/10.1016/j.enconman.2020.112895
  26. Menni, Y., Azzi, A., & Chamkha, A. (2019, February 28). Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path: A review. Journal of Thermal Analysis and Calorimetry, Vol. 135, pp. 1951–1976. https://doi.org/10.1007/s10973-018-7268-x
  27. Morgenstern, P., Li, M., Raslan, R., Ruyssevelt, P., & Wright, A. (2016). Benchmarking acute hospitals: Composite electricity targets based on departmental consumption intensities? Energy and Buildings, 118, 277–290. https://doi.org/10.1016/j.enbuild.2016.02.052
  28. Murphy, P. A. (1993, January 1). A guide to effective care in pregnancy and childbirth. Edited by Murray Enkin, Marc J.N.C. Keirse, and Iain Chalmers. New York: Oxford University Press, 1990. 376 pages. $24.95, softcover. Journal of Nurse-Midwifery, Vol. 38, pp. 58–60. https://doi.org/10.1016/0091-2182(93)90137-6
  29. National Renewable Laboratory NREL. (2015). High Performance Flat Plate Solar Thermal Collector Evaluation
  30. Ohijeagbon, O. D., Ajayi, O., Waheed, O., Adekojo, M., Salawu, E. Y., & Oyawale, F. A. (2019). Design of optimal hybrid renewable energy system for sustainable power supply to isolated-grid communities in North Central, Nigeria. Procedia Manufacturing, 35, 278–284. https://doi.org/10.1016/j.promfg.2019.05.040
  31. Agbo, S.N and Unachukwu, G. . (2006). Performance Evaluation and Optimisation of the NCERD Thermosyphon Solar Water Heater. World Renewable Energy Congress, 19–25. Florence, Italy
  32. Anagnostopoulos, A., Sebastia-Saez, D., Campbell, A. N., & Arellano-Garcia, H. (2020). Finite element modelling of the thermal performance of salinity gradient solar ponds. Energy, 203, 117861. https://doi.org/10.1016/j.energy.2020.117861
  33. Ayompe, L. M., & Duffy, A. (2013). Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate. Applied Thermal Engineering, 58(1–2), 447–454. https://doi.org/10.1016/j.applthermaleng.2013.04.062
  34. Backer, H. D. (1996). Effect of Heat on the Sterilisation of Artificially Contaminated Water. Journal of Travel Medicine, 3, 1–4. Retrieved from https://academic.oup.com/jtm/article/3/1/1/1804390
  35. Brownson, J. R. S. (2014). Solar Energy Conversion Systems (First edit; Elsevier, ed.). Waltham, USA: Academic Press imprint of Elsevier
  36. Buckles, W.E., Klein, S. . (1980). Analysis of solar domestic hot water heaters. Solar Energy, 25(5), 417–424
  37. Christiansen, N., Kaltschmitt, M., Dzukowski, F., & Isensee, F. (2015). Electricity consumption of medical plug loads in hospital laboratories: Identification, evaluation, prediction and verification. Energy and Buildings, 107, 392–406. https://doi.org/10.1016/j.enbuild.2015.08.022
  38. Costa, L., & Bracco, P. (2009). Mechanisms of Crosslinking, Oxidative Degradation and Stabilization of UHMWPE. In UHMWPE Biomaterials Handbook (pp. 309–323). https://doi.org/10.1016/B978-0-12-374721-1.00021-3
  39. Deng, J., O’Donovan, T. S., Tian, Z., King, J., & Speake, S. (2019). Thermal performance predictions and tests of a novel type of flat plate solar thermal collectors by integrating with a freeze tolerance solution. Energy Conversion and Management, 198. https://doi.org/10.1016/j.enconman.2019.111784
  40. Diez, F. J., Navas-Gracia, L. M., Martínez-Rodríguez, A., Correa-Guimaraes, A., & Chico-Santamarta, L. (2019). Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates. Solar Energy, 188, 1320–1331. https://doi.org/10.1016/j.solener.2019.07.022
  41. Duffie, J. A., & Beckman, W. A. (2006). Solar engineering of thermal processes. In Intersciences Publication, USA (4th ed.). https://doi.org/April 15, 2013
  42. Eltaweel, M., Abdel-Rehim, A. A., & Hussien, H. (2020). Indirect thermosiphon flat-plate solar collector performance based on twisted tube design heat exchanger filled with nanofluid. International Journal of Energy Research, 44(6), 4269–4278. https://doi.org/10.1002/er.5146
  43. “Energy Commission of Nigeria.” (2017). National Workshop on Review of Renewable Energy Master Plan. In National Workshop on Review of Renewable Energy Master Plan Abuja. Abuja: Energy Commission of Nigeria
  44. Fawaz, H. E., Badawy, M. T. S., Abd Rabbo, M. F., & Elfeky, A. (2018). Numerical investigation of fully developed periodic turbulent flow in a square channel fitted with 45° in-line V-baffle turbulators pointing upstream. Alexandria Engineering Journal, 57(2), 633–642. https://doi.org/10.1016/j.aej.2017.02.020
  45. Fuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81(February), 1530–1547. https://doi.org/10.1016/j.rser.2017.05.229
  46. Gerg, H.P. and Prakash, J. (2014). No Solar Energy Fundamentals and Applications. New Delhi: Tata McGraw-hill Publishing Company Ltd
  47. Govind N. K, Shireesh B. K, S. B. (2006). Determination of design space and optimisation of solar water heating systems. Solar Energy, 32, 263–276
  48. Govind N.K., Shireesh B.K., S. B. (2008). Design of solar thermal systems utilising pressurised hot water. Solar Energy, 82, 686–699
  49. Honisch, M., Stamminger, R., & Bockmühl, D. P. (2014). Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. Journal of Applied Microbiology, 117(6), 1787–1797. https://doi.org/10.1111/jam.12647
  50. Hossain, M. S., Pandey, A. K., Tunio, M. A., Selvaraj, J., Hoque, K. E., & Rahim, N. A. (2016). Thermal and economic analysis of low-cost modified flat-plate solar water heater with parallel two-side serpentine flow. Journal of Thermal Analysis and Calorimetry, 123(1), 793–806. https://doi.org/10.1007/s10973-015-4883-7
  51. Kalogirou, S. (2009). Solar energy engineering : processes and systems. In Academic Press publications. https://doi.org/10.1016/B978-0-12-374501-9.00014-5
  52. Kalogirou, S. A. (2014). Designing and Modeling Solar Energy Systems. In Solar Energy Engineering (2nd edition, pp. 583–689). Oxford OX5 1GB, UK: Academic Press publications
  53. Kiliç, F., Menlik, T., & Sözen, A. (2018). Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Solar Energy, 164(April 2017), 101–108. https://doi.org/10.1016/j.solener.2018.02.002
  54. Li, Z., Chen, H., Xu, Y., & Tiow Ooi, K. (2020). Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors. Energy Conversion and Management, 215. https://doi.org/10.1016/j.enconman.2020.112895
  55. Menni, Y., Azzi, A., & Chamkha, A. (2019, February 28). Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path: A review. Journal of Thermal Analysis and Calorimetry, Vol. 135, pp. 1951–1976. https://doi.org/10.1007/s10973-018-7268-x
  56. Morgenstern, P., Li, M., Raslan, R., Ruyssevelt, P., & Wright, A. (2016). Benchmarking acute hospitals: Composite electricity targets based on departmental consumption intensities? Energy and Buildings, 118, 277–290. https://doi.org/10.1016/j.enbuild.2016.02.052
  57. Murphy, P. A. (1993, January 1). A guide to effective care in pregnancy and childbirth. Edited by Murray Enkin, Marc J.N.C. Keirse, and Iain Chalmers. New York: Oxford University Press, 1990. 376 pages. $24.95, softcover. Journal of Nurse-Midwifery, Vol. 38, pp. 58–60. https://doi.org/10.1016/0091-2182(93)90137-6
  58. National Renewable Laboratory NREL. (2015). High Performance Flat Plate Solar Thermal Collector Evaluation
  59. Ohijeagbon, O. D., Ajayi, O., Waheed, O., Adekojo, M., Salawu, E. Y., & Oyawale, F. A. (2019). Design of optimal hybrid renewable energy system for sustainable power supply to isolated-grid communities in North Central, Nigeria. Procedia Manufacturing, 35, 278–284. https://doi.org/10.1016/j.promfg.2019.05.040
  60. Olatomiwa, L. (2016). Optimal configuration assessments of hybrid renewable power supply for rural healthcare facilities. Energy Reports, 2, 141–146. https://doi.org/10.1016/j.egyr.2016.06.001
  61. Olatomiwa, L., Mekhilef, S., & Ohunakin, O. S. (2016). Hybrid renewable power supply for rural health clinics ( RHC ) in six geo-political zones of Nigeria. 13, 1–12. https://doi.org/10.1016/j.seta.2015.11.001
  62. Rejeb, O., Gaillard, L., Giroux-Julien, S., Ghenai, C., Jemni, A., Bettayeb, M., & Menezo, C. (2020). Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances. Renewable Energy, 146, 610–627. https://doi.org/10.1016/j.renene.2019.06.158
  63. Rosli, M. A. M., Misha, S., Sopian, K., Mat, S., Yusof Sulaiman, M., & Salleh, E. (2014). Parametric analysis on heat removal factor for a flat plate solar collector of serpentine tube. World Applied Sciences Journal, 29(2), 184–187. https://doi.org/10.5829/idosi.wasj.2014.29.02.1357
  64. Shariah, A.M and Shialabi, B. (2013). Optimal Design for a Thermosyphon Solar Flat Plate Water Heater. Renewable Energy, 11((12), 351 – 361
  65. Sukhatme, S. (2009). Solar Energy: Principles of Thermal Collection and Storage. India: Tata McGraw-hill Publishing Company
  66. Teixeira, H., Gomes, M. G., Moret Rodrigues, A., & Pereira, J. (2020). Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films. Building and Environment, 168, 106474. https://doi.org/10.1016/j.buildenv.2019.106474
  67. Wang, K., Herrando, M., Pantaleo, A. M., & Markides, C. N. (2019). Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres. Applied Energy, 254, 113657. https://doi.org/10.1016/j.apenergy.2019.113657
  68. World Energy Council. (2004). 2004 Survey of Energy Resources. In Judy Trinnaman and Alan Clarke (Ed.), Solar Energy (Twentieth, pp. 295–334). Elsevier Science & Technology Books
  69. Yanto, Livneh, B., Rajagopalan, B., & Kasprzyk, J. (2017). Hydrological model application under data scarcity for multiple watersheds, Java Island, Indonesia. Journal of Hydrology: Regional Studies, 9, 127–139
  70. Zulkifle, I., Alwaeli, A. H. A., Ruslan, M. H., Ibarahim, Z., Othman, M. Y. H., & Sopian, K. (2018). Numerical investigation of V-groove air-collector performance with changing cover in Bangi, Malaysia. Case Studies in Thermal Engineering, 12, 587–599

Last update: 2021-07-23 08:47:11

No citation recorded.

Last update: 2021-07-23 08:47:11

No citation recorded.