High Performance MPPT Approach for Off-Line PV System Equipped With Storage Batteries and Electrolyzer

*Yaser Nawwaf Anagreh orcid scopus  -  Electrical Power Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
Ayat Alnassan  -  Electrical Power Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
Ashraf Radaideh scopus  -  Electrical Power Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
Received: 10 Nov 2020; Revised: 24 Jan 2021; Accepted: 15 Feb 2021; Published: 1 Aug 2021; Available online: 25 Feb 2021.
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The current publication is directed to achieve a high-performance stand-alone PV system having the capability of tracking maximum output power, providing fixed output DC voltage, and attaining efficient system utilization, under different irradiation levels. A new maximum power point tracking (MPPT) approach integrating the incremental conductance algorithm and fuzzy logic control, and enhanced with PI-controller, was proposed to track maximum power. To provide fixed output DC voltage and approaching full system utilization, the PV system is equipped with a battery bank, electrolyzer; as a dump load, and buck-boost converter, with two controllers. The results of the proposed MPPT technique; modified incremental conductance (MINC), are compared with the corresponding results of three prevalently implemented MPPT algorithms: perturbed and observed (P&O), modified variable step-size P&O (VSZ-PO) and the ordinarily incremental conductance (INC). The highest output power, best tracking efficiency and best output power response are achieved by utilizing the proposed MPPT method. The results of the output voltage response and electrolizer on/off states confirm the ability of the PV scheme to provide fixed DC voltage and attain efficient system utilization, under varying irradiances.

Keywords: Photovoltaic; MPPT; Battery bank; Electrolyzer; Fuzzy logic.

Article Metrics:

  1. Ahmadi, M., Ghazvini, M., Sadeghzadeh, M., Nazari, M., Kumar, R., Naeimi, A., Ming, T. (2018). Solar power technology for electricity generation: A critical review. Energy Science &Engineering, 6 (5), 340-361. doi: 10.1002/ese3.239
  2. Alajmi, B., Ahmed, K., Finney, S., Williams, B. (2013). A maximum power point tracking technique for partially shaded photovoltaic systems in micro grids. IEEE Transactions on Industrial Electronics, 60(4), 1596-1606. doi: 10.1109/tie.2011.2168796
  3. Al-Refai, M. (2014). Matlab/Simulink simulation of solar energy storage system. International Journal of Electrical, Computer, Electronics and Communication Engineering, 8(2), 297-302
  4. Babaa, S., Armstrong, M., Pickert, V. (2014). Overview of Maximum Power Point Tracking Control Methods for PV Systems. Journal of Power and Energy Engineering, 2, 59-72. doi.org/10.4236/jpee.2014.28006
  5. Bai, Y., Zhuang, H., Wang, D. (2006). Advanced fuzzy logic technologies in industrial applications. Springer, UK, 17-36; doi.org/10.1007/978-1-84628-469-4
  6. Berrera, M., Dolara, A., Faranda, R., Leva, S. (2009). Experimental test of seven widely-adopted MPPT algorithms. In 2009 IEEE Bucharest Power Tech (pp. 1-8); doi: 10.1109/PTC.2009.5282010
  7. Bhattacharyya, S., Samanta S. (2018). DC link voltage control based power management scheme for standalone PV systems. In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1-5 ); doi: 10.1109/PEDES.2018.8707904
  8. Bhukya, M., Kota, V. (2018). A Novel PandOT-Neville’s Interpolation MPPT Scheme for Maximum PV System Energy Extraction. Int. Journal of Renewable Energy Development, 7 (2), 251-260. doi.org/10.14710/ijred.7.3.251-260
  9. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus A. (2006). Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics, 53(5), 1398-1409; doi: 10.1109/TIE.2006.881997
  10. Bose, B. (2010). Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 4(1), 6–17; doi: 10.1109/mie.2010.935860
  11. Bose, B. (2013). Global energy scenario and impact of power electronics in 21st century. IEEE Transactions on Industrial Electronics, 60(7), 2638-2651; doi: 10.1109/tie.2012.2203771
  12. Chandel, S., Naik, M., Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084-1099; doi.org/10.1016/j.rser.2015.04.083
  13. Chim, C., Neelakantan, P., Yoong, H., Teo, K. (2011). Fuzzy Logic Based MPPT for Photovoltaic Modules Influenced by Solar Irradiation and Cell Temperature. In 2011 UkSim 13th International Conference on Computer Modelling and Simulation; Cambridge (pp. 376-381); doi: 10.1109/UKSIM.2011.78
  14. Diva, C., Kavitha, B. (2013). Simulation of a solar MPPT charger using CUK converter for standalone application. International Journal of Electrical, Electronics and Computer Systems (IJEECS), 1(1), 2347-2820
  15. Enrique, J., Andújar, J., Bohórquez, M. (2010). A reliable, fast and low cost maximum power point tracker for photovoltaic applications. Solar energy, 84(1), 79-89; doi.org/10.1016/j.solener.2009.10.011
  16. Esram, T., Chapman, P. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22 (2), 439- 449. doi: 10.1109/tec.2006.874230
  17. Iancu, I. (2012). A Mamdani Type Fuzzy Logic Controller. In: Fuzzy Logic - controls, concepts, theories and applications. IntechOpen; doi: 10.5772/2662
  18. Javed, K., Ashfaq, H., Singh, R. (2018). An improved MPPT algorithm to minimize transient and steady state oscillation conditions for small SPV systems. Int. Journal of Renewable Energy Development, 7 (3), 191-197. doi.org/10.14710/ijred.7.3.191-197
  19. Karthikeyan, V., Gupta R. (2017). Varying phase angle control in isolated bidirectional DC–DC converter for integrating battery storage and solar PV system in standalone mode. IET Power Electronics, 10(4), 471-479; doi: 10.1049/iet-pel.2016.0162
  20. Kharb, R., Shimi, S., Chatterjic, S., Ansari, Md. (2014). Modeling of solar PV module and maximum power point tracking using ANFIS. Renewable and Sustainable Energy Reviews, 33, 602–612; doi.org/10.1016/j.rser.2014.02.014
  21. Khatibi, A., Astaraei, F., Ahmadi, M. (2019). Generation and combination of the solar cells: A current model review. Energy Science & Engineering, 7(2), 305-322. doi: 10.1002/ese3.292
  22. Kim, W., Choi, W. (2010). A novel parameter extraction method for the one-diode solar cell model. Solar Energy , 84(6), 1008–1019; doi.org/10.1016/j.solener.2010.03.012
  23. Li, C-H., Zhu, X-J., Cao, G-Y., Hu, M-R. (2009). Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy, 34 (3), 815-826; doi.org/10.1016/j.renene.2008.04.018
  24. Liu, Y-H., Leou, R-C., Cheng, J-S. (2005). Design and implementation of a maximum power point tracking battery charging system for photovoltaic applications. 2005 IEEE Russia Power Tech; St. Petersburg, Russia, 1-5; doi: 10.1109/PTC.2005.4524349
  25. Maleki, A., Pourfayaz, F., Ahmadi, M. (2016). Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Solar Energy, 139, 666-675. http://dx.doi.org/10.1016/j.solener.2016.09.028
  26. Mei, Q., Shan, M., Liu, L., Guerrero, J. (2011). A Novel Improved Variable Step-Size Incremental Resistance MPPT Method for PV Systems. IEEE Transactions on Industrial Electronics, 58(6), 2427-2434; doi: 10.1109/TIE.2010.2064275
  27. Metry, M., Shadmand, M., Balog, R., Abu-Rub, H. (2017). MPPT of photovoltaic systems using sensorless current-based model predictive control. IEEE Transactions on Industry Applications, 53(2), 1157–1167; doi: 10.1109/tia.2016.2623283
  28. Mobaied, M. (2008) Fuzzy logic speed controllers using FPGA technique for three-phase induction motor drives. Master thesis, The Islamic University, Gaza
  29. Mohammadnezami, M., Ehyaei, M., Rosen, M., Ahmadi, M. (2015). Meeting the electrical energy needs of a residential building with a wind-photovoltaic hybrid system. Sustainability, 7 (3), 2554-2569. doi: 10.3390/su7032554
  30. Mummadi, V. (2010). Control of TI-SEPIC Converter for Optimal Utilization of PV Power. In India International Conference on Power Electronics 2010 (IICPE 2010). (pp. 1-5); doi: 10.1109/IICPE.2011.5728087
  31. Naick, B., Chatterjee, T., Chatterjee, K. (2017). Performance analysis of maximum power point tracking algorithms under varying irradiation. Int. Journal of Renewable Energy Development, 6 (1), 65-74. doi.org/10.14710/ijred.6.1.65-74
  32. Ocran, T., Cao, J., Cao, B., Sun, X. (2005). Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle. Tsinghua Science and Technology, 10(2), 204-208; doi: 10.1016/S1007-0214(05)70055-9
  33. Pandey, A., Dasgupta, N., Mukerjee, A. (2008). High Performance Algorithms for Drift Avoidance and Fast Tracking in Solar MPPT System. IEEE Transactions on Energy Conversion, 23(2), 681-689; doi: 10.1109/TEC.2007.914201
  34. Pavlović, T., Radonjić, I., Milosavljević, D., Pantić, L. (2012). A review of concentrating solar power plants in the world and their potential use in Serbia. Renewable and Sustainable Energy Reviews, 16, 3891-3902. doi.org/10.1016/j.rser.2012.03.042
  35. Pazheri, F., Othman, M., Malik, N. (2014). A review on global renewable electricity scenario. Renewable and Sustainable Energy Reviews, 31, 835-845; doi.org/10.101/j.rser.2013.12.020
  36. Premkumar, M., Kumar, C., Sowmya, R. (2020). Mathematical modelling of solar photovoltaic cell/panel/array based on the physical parameters from the manufacturer’s datasheet. Int. Journal of Renewable Energy Development, 9 (1), 7-22. doi.org/10.14710/ijred.9.1.7-22
  37. Qiang, F., Tong, N. (2010). Complex-method-based PSO algorithm for the maximum power point tracking in photovoltaic system. In 2010 Second International Conference on Information Technology and Computer Science (pp. 134–137); doi: 10.1109/ITCS.2010.39
  38. Revankar, P., Thosar, A., Gandhare, W. (2010). Maximum Power Point Tracking for PV Systems Using MATLAB/SIMULINK. In 2010 Second International Conference on Machine Learning and Computing (pp. 8-11); doi: 10.1109/ICMLC.2010.54
  39. Saxena, N., Singh, B., Vyas, A. (2017). Single-phase solar PV system with battery and exchange of power in grid-connected and standalone modes. IET Renewable Power Generation, 11(2), 325-333; doi: 10.1049/iet-rpg.2016.0143
  40. Sebastian, W., Subhash, K., Reinhard, M. (2016). Financial Viability of Grid-connected Solar PV and Wind Power Systems in Germany. Energy Procedia, 106, 35-45; doi.org/10.1016/j.egypro.2016.12.103
  41. Sera, D., Teodorescu, R., Rodriguez, P. (2007). PV panel model based on datasheet values. In 2007 IEEE International Symposium on Industrial Electronics. (pp. 2392-2396); doi: 10.1109/ISIE.2007.4374981
  42. Singh, A., Singh, R. (2014). Load-Frequency Controller of electrical Power plant using Ziegler Nichols (ZN) tuning controller. IJISET - International Journal of Innovative Science, Engineering & Technology, 1(6), 2348–7968
  43. Soufi, Y., Bechouat, M., Kahla, S., Bouallegue, K. (2014). Maximum power point tracking using a fuzzy logic control scheme for photovoltaic system; In 2014 International Conference on Renewable Energy Research and Application (pp. 902-906); doi: 10.1109/ICRERA.2014.7016515
  44. Subudhi, B., Pradhan, R. (2013). A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy, 4(1), 89-98; doi: 10.1109/TSTE.2012.2202294
  45. Tafticht, T., Agbossou, K., Doumbia, M. (2007). A new MPPT method for photovoltaic systems used for hydrogen production. The COMPEL International Journal of Computation and Mathematics in Electrical, 26(1), 62-74; doi: 10.1108/03321640710713976
  46. Thang T., Ahmed, A., Kim, C., Park J. (2015). Flexible system architecture of stand-alone PV power generation with energy storage device. IEEE Transactions on Energy Conversion, 30(4), 1386 – 1396; doi: 10.1109/TEC.2015.2429145
  47. Vastav, B., Nema, S., Swarnkar, P., Rajesh, D. (2016). Automatic Solar Tracking System using DELTA PLC. In 2016 International Conference on Electrical Power and Energy Systems (pp. 16-21); doi: 10.1109/icepes.2016.7915899
  48. Yeong-Chau, K., Tsorng-Juu, L., Jiann-Fuh, C. (2001). Novel maximum power-point- tracking controller for photovoltaic energy conversion system. IEEE Transactions on Industrial Electronics, 48(3), 594–601; doi: 10.1109/41.925586
  49. Yokoyama, R., Hida, Y., Koyanagi, K., Iba, K. (2011). The role of battery systems and expandable distribution networks for smarter grid. In IEEE General Meeting Power& Energy Society (pp. 1-6); doi: 10.1109/N/A15735.2011
  50. Yu, G., Jung, Y., Choi, J., Kim, G. (2004). A novel two-mode MPPT control algorithm based on comparative study of existing algorithms. Solar Energy, 76(4), 455-463; doi.org/10.1016/j.solener.2003.08.038

Last update: 2021-03-04 22:23:58

No citation recorded.

Last update: 2021-03-04 22:23:59

No citation recorded.