Differential Pulse Voltammetry Study for Quantitative Determination of Dysprosium (III) in Acetonitrile Solution

*Santhy Wyantuti orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University. Jl. Raya Bandung Sumedang Km 21. Jatinangor, Sumedang 45363., Indonesia
Uji Pratomo scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University. Jl. Raya Bandung Sumedang Km 21. Jatinangor, Sumedang 45363., Indonesia
Shauvina A Shauvina  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University. Jl. Raya Bandung Sumedang Km 21. Jatinangor, Sumedang 45363., Indonesia
Yeni Wahyuni Hartati  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University. Jl. Raya Bandung Sumedang Km 21. Jatinangor, Sumedang 45363., Indonesia
Husein Hernandi Bahti scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University. Jl. Raya Bandung Sumedang Km 21. Jatinangor, Sumedang 45363., Indonesia
Received: 4 Oct 2020; Revised: 24 Nov 2020; Accepted: 29 Nov 2020; Published: 1 May 2021; Available online: 1 Dec 2020.
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Dysprosium has gained global interest due to its key application in renewable technology, such as wind power technology. The presence of this rare earth element (REE) can be determined by several spectroscopic methods. Recently, a voltammetry method has provided an alternative method for the simple and fast detection of REEs. However, to the best of our knowledge, this experiment is usually carried out in an aqueous solvent, and the response of the REE in an organic solvent by the voltammetry method has rarely been investigated. In this research, the quantitative detection of dysprosium and dysprosium mixtures with samarium, europium and gadolinium in acetonitrile is reported by differential pulse voltammetry. A Box-Behnken design was applied to predict the optimum condition of the measurements. Three factors, namely potential deposition, deposition time and amplitude modulation, were found to significantly influence the signal under optimal conditions, which are -1.0 V, 83.64 s and 0.0929 V, respectively. The surface characterization of dysprosium deposited on a Pt surface shows better deposition under 100% acetonitrile compared to a lower concentration of acetonitrile. The evaluation in this study shows a detection limit of 0.6462 mg•L-1 and a quantitation limit of 2.1419 mg•L-1, with a precision value and recovery value of 99.97% and 93.62%, respectively.

Keywords: Acetonitrile; Box-Behnken design; Dysprosium; Differential Pulse Voltammetry; Chemometrics
Funding: Academic Leadership Grant Program, Padjadjaran University, and the Directorate of Research and Community Service through Superior Research of Higher Education (DRPM-PDUPT), Padjadjaran University

Article Metrics:

  1. Alonso, E., Sherman, A.M., Wallington T.J., Everson, M.P., Field F.R., & Roth, R. (2012). Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol; 46:3406-14. https://doi.org/10.1021/es203518d
  2. Anwar, S.B. (2017) Penggunaan Desain Eksperimen secara Voltammetri untuk Penentuan Unsur Tanah Jarang (Sm, Dy, Eu) sebagai Kompleks dengan Ligan Dietilentriamin Pentaasetat (DTPA). Thesis. Universitas Padjadjaran. http://repository.unpad.ac.id/frontdoor/index/index/docId/12005
  3. Bank, T., Roth, E., Tinker, P., & Granite, E. (2016) Analysis of rare earth elements in geologic samples using inductively coupled plasma mass spectrometry. US DOE Topical Report. https://www.netl.doe.gov/sites/default/files/netl-file/Rare-Earth-Trace-Bulk-Elemental-Analysis-ICP-MS-Topical-Report-4-14-2016.pdf.
  4. Bard, J. A. & Faulkner, L.R. (2001). Electrochemical methods: fundamentals and applications (2nd ed.). John Wiley & Sons
  5. Bezerra, M.A., Santelli, R.E., Oliveiraa, E.P., Villar, L.S., & Escaleira, L.A. (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76:965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  6. Chien, N.X., Khai, P.N., Hien, T.D., Nguyen, D., Bot, D.C., Van Trung, T., Cuc, N.T., Minh, L.H., Thuc, N.V., Ngan, B.T., & Van Thuan, D. (2006) The determination of rare earth elements in geological and environmental samples by inductively coupled plasma mass spectrometry. VAEC, 6:217-225
  7. Crawford, R.H. (2009). Life cycle energy and greenhouse emissions analysis of wind turbines and the- effect of size on energy yield. Renew Sustain Energy Rev; 13:2653-60. https://doi.org/10.1016/j.rser.2009.07.008
  8. Creager, S. (2007). Solvents and supporting electrolytes. In C.G. Zoski (Ed.)., Handbook of Electrochemistry (1st Ed., pp. 57-72). Elsevier Science. https://doi.org/10.1016/B978-044451958-0.50004-5
  9. Demir, N. & Taskin, A. (2013). Life cycle assessment of wind turbines in Pinarbasi-Kayseri. J Cleaner Prod; 54:253-63. https://doi.org/10.1016/j.jclepro.2013.04.016
  10. Elazazy, M.S., El-Hamshary, M., Sakr, M., Al-Easa, H.S. (2018). Plackett-Burman and Box-Behnken designs as chemometric tools for micro-determination of L-Ornithine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 193:397-406. https://doi.org/10.1016/j.saa.2017.12.044
  11. Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., & Dempsey, J.L. (2018). A practical beginner's guide to cyclic voltammetry. J. Chem. Educ; 95:197−206. https://doi.org/10.1021/acs.jchemed.7b00361
  12. Elshkaki, A. & Graedel, T.E. (2013). Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J Cleaner Prod; 59:260-73. https://doi.org/10.1016/j.jclepro.2013.07.003
  13. Elshkaki, A. & Graedel, T.E. (2014). Dysprosium, the balance problem, and wind power technology. Applied Energy; 136:548-559. https://doi.org/10.1016/j.apenergy.2014.09.064
  14. Ganjali, M.R., Zare-Dorabei, R., & Norouzi, P. (2009) Design and construction of a novel optical sensor for determination of trace amounts of dysprosium ion. Sensors and Actuators, B: Chemical; 143(1):233-238. https://doi.org/10.1016/j.snb.2009.09.014
  15. Garcia-Olivares, A., Ballabrera-Poy, J, Garcıa-Ladona, E., Turiel, A. (2012). A global renewable mix with proven technologies and common materials. Energy Policy; 41:561-74. https://doi.org/10.1016/j.enpol.2011.11.018
  16. Gross, R., Leach, M., Bauen, A. (2003). Progress in renewable energy. Environ Int; 29:105-22. https://doi.org/10.1016/S0160-4120(02)00130-7
  17. Harahap, F.W. (2018) Penerapan Desain Eksperimen Plackett-Burman dan Box-Behnken pada Analisis Voltammetri Pulsa Diferensial untuk Penentuan Kadar Gadolinium. Thesis. Universitas Padjadjaran. http://repository.unpad.ac.id/frontdoor/index/index/docId/12054
  18. Kalair, A., Abas, N., Saleem, M.S., Kalair, A.R., & Khan, N. (2020). Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storages: e135. https://doi.org/10.1002/est2.135
  19. Koverga, V.O., Oleksandr, M.K., Oleg, N.K., Bogdan, A.M & Abdenacer, I. (2017). A new potential model for acetonitrile: Insight into the local structure organization. Journal of Molecular Liquids; 233:251-261. https://doi.org/10.1016/j.molliq.2017.03.025
  20. Krebs, R.E. (2006). The history and use of our earth's chemical elements: a reference guide. United States of America: Greenwood Publishing Group, Inc
  21. Kushkhov, H.B., Uzdenova, A.S., Saleh, M.M.A., Qahtan, A.M.F., & Uzdenova, L.A. (2013). The electroreduction of gadolinium and dysprosium ions in equimolar NaCl-KCl melt. American Journal of Analytical Chemistry; 2013:39-46. https://doi.org/10.4236/ajac.2013.46A006
  22. Lodermeyer, J., Multerer, M., Zistler, M., Jordan, S., Gores, H.J., Kipferl, W., Diaconu, E., Sperl, M., & Bayreuther, G. (2006) Electroplating of dysprosium, electrochemical investigations, and study of magnetic properties. Journal of The Electrochemical Society; 153:242-248. https://doi.org/10.1149/1.2172548
  23. Markombe, M., Charlton, V.D., Bongiwe, S., Emmanuel, I., & Vernon, S. (2018). Voltammetric and spectroscopic determination of rare earth elements in fresh and surface water samples. Environments; 5:112. https://doi.org/10.3390/environments5100112
  24. Miller, J.N., Miller, J.C., & Miller, R.D. (2018). Statistics and chemometrics for analytical chemistry. 7th ed. Harlow: Pearson Education Limited
  25. Montgomery, D.C. (2001). Design and analysis of experiments (5 ed.). Wiley, NewYork
  26. Morgan, E. (1997). Chemometrics: experimental design, Published on behalf of ACOL by John Wiley & Sons, Chichester
  27. Nguyen, D.T.C, Dang, H.H., Vo, D.N., Bach, L.G., Nguyen, T.D., & Van Tran, T. (2020). Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. Journal of Hazardous Materials; 404:124146. https://doi.org/10.1016/j.jhazmat.2020.124146
  28. Rajendran, J., Balasubramanian, G., & Thampi, P. (2008) Determination of rare earth elements in Indian coastal monazite by ICP-AES and ICP-MS analysis and their geochemical significance. Current Science; 94:1-7
  29. Setyorini, Z. (2018). Studi Voltammetri Penentuan Disprosium (III) Menggunakan Desain Eksperimen Plackett-Burman dan Komposit Pusat. Thesis. Universitas Padjadjaran. http://repository.unpad.ac.id/frontdoor/index/index/docId/12071
  30. Schramm, R. (2016) Use of X-ray fluorescence analysis for the determination of rare earth elements. Physical Sciences Reviews; 1:1-17. https://doi.org/10.1515/psr-2016-0061
  31. Smoli, A., Stempin, M., & Howaniec, N. (2016) Determination of rare earth elements in combustion ashes from selected Polish coal mines by wavelength dispersive X-Ray fluorescence spectrometry. Spectrochimica Acta Part B; 116:63-74. https://doi.org/10.1016/j.sab.2015.12.005
  32. Suchacz, B., Wesolowski, M., Yu, F., Wang, X.X., Yang, N., Compton, R.G., Yu, M., Dai, S., Liu, G., Shakil, A.O., & Lee, W.M. (2016). Voltammetric quantitation of acetaminophen in tablets using solid graphite electrodes. Anal. Methods; 8:3307-3315. https://doi.org/10.1039/C5AY03416G
  33. Taam, I., Jesus, C.S., Mantovano, J.L., & Gante, V. (2013) Quantitative analysis of rare earths by X-ray fluorescence spectrometry. International Nuclear Atlantic Conference, 24-29
  34. Tian, M., Jia, Q., & Liao, W. (2013) Studies on synergistic solvent extraction of rare earth elements from nitrate medium by mixtures of 8-hydroxyquinoline with Cyanex 301 or Cyanex 302. Journal of Rare Earths; 31(6):604-608. https://doi.org/10.1016/S1002-0721(12)60328-7
  35. Van Tran, T., Nguyen, D.T.C., Le, H.T.N., Vo, D.N., Nanda, S., & Nguyen, T.D. (2020a). Optimization, equilibrium, adsorption behaviour and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. Journal of Environmental Sciences; 93:137-150. https://doi.org/10.1016/j.jes.2020.02.007
  36. Van Tran, T., Nguyen, H., Ai Le, P. H., Nguyen, D.T.C., Nguyen, T.T., Nguyen, C.V., Vo, D.N., & Nguyen, T.D. (2020b). Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. Journal of Environmental Chemical Engineering; 8:104189. https://doi.org/10.1016/j.jece.2020.104189
  37. Wyantuti, S., Pratomo, U., Hartati, Y.W., Hendrati, D., & Bahti, H.H. (2018a). A study of green electro-analysis conducted by experimental design method for detection of samarium as complex with diethylenetriaminepentaacetic acid (DTPA). AIP Conference Proceedings; 2049:030010. https://doi.org/10.1063/1.5082511
  38. Wyantuti, S., Pratomo, U., Hartati, Y.W., Anggraeni, A., & Bahti, H.H. (2018b). Fast and simultaneous detection of Sm, Eu, Gd, Tb and Dy using combination of voltammetry method and multivariate analysis. Res. J. Chem. Environ; 22;302-306
  39. Wyantuti, S., Pratomo, U., Hartati, Y.W., Hendrati, D., & Bahti, H.H. (2019). Application of experimental design by differential pulse voltammetry for determination of rare earth elements as complexes with diethylenetriaminepentaacetic acid (DTPA). International Journal of Recent Technology and Engineering; 8:33 -37. https://doi.org/10.35940/ijrte.B1008.0782S719
  40. Yanez, I.L., Morales, O.D., Figuiredo, M.C., & Koper, M.T.M. (2015). Hydrogen oxidation and hydrogen evolution on a platinum electrode in acetonitrile. ChemElectroChem; 2:1612 - 1622. https://doi.org/10.1002/celc.201500341
  41. Zamani, H.A., Faridbod, F., & Ganjali, M.R. (2013) Dysprosium selective potentiometric membrane sensor. Materials Science and Engineering C; 33(2):608-612. https://doi.org/10.1016/j.msec.2012.10.004
  42. Zanello, P. (2003). Inorganic electrochemistry: theory, practice and application. The Royal Society of Chemistry

Last update: 2021-05-16 00:31:02

  1. Development of differential pulse voltammetric method for determining samarium (III) through electroanalytical study of the metal ion in acetonitrile using Box–Behnken design

    Heliyon, 7 (4), 2021. doi: 10.1016/j.heliyon.2021.e06602

Last update: 2021-05-16 00:31:02

No citation recorded.