skip to main content

Thermal Performance Comparison of Parabolic Trough Collector (PTC) Using Various Nanofluids

1Department of Technology, Shivaji University, District Kolhapur, Maharashtra, India

2Sanjay Ghodawat Group of Institutions, Faculty of engineering, Atigre, District Kolhapur, Maharashtra, India

Received: 28 Oct 2020; Revised: 12 Jun 2021; Accepted: 27 Jun 2021; Available online: 18 Jul 2021; Published: 1 Nov 2021.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The objective of this paper is to investigate the theoretical performance of Parabolic Trough Collector (PTC) using various nanofluids. The theoretical performances are calculated for Al2O3, graphite, magnetite, SWCNH, CuO, SiO2, MWCNT, TiO2, Fe2O3, and ZnO in water nanofluids. The heat transfer equations, thermodynamic properties of nanofluid and pumping power are utilised for the development of novel thermal model.  The theoretical thermal efficiency of the PTC is calculated, and the economic viability of the technology is predicted for a range of nanofluid concentration. The results showed that the thermal conductivity increases with the concentration of nanoparticles in the base fluid. Magnetite nanofluid showed the highest thermal efficiency, followed by CuO, MWCNT, ZnO, SWCNH, TiO2, Fe2O3, Al2O3, graphite, and SiO2, respectively. The study reveals that MWCNT at 0.4% concentration is the best-suited nanofluid considering thermal gain and pumping power. Most of the nanofluids achieved optimum efficiency at 0.4% concentration. The influence of mass flow rate on thermal efficiency is evaluated. When the mass flow rate increased from 70 Kg/hr to 90Kg/hr, a 10%-20% efficiency increase is observed. Dispersing nanofluids reduces the levelized cost of energy of large-scale power plants. These findings add to the knowledge of the scientific community aimed explicitly at solar thermal energy technology. The report can also be used as a base to pursue solar thermal projects on an economic basis.

Fulltext View|Download
Keywords: PTC thermal performance, pumping power, PTC performance, Nanofluids, levelized cost of PTC, modelling of PTC

Article Metrics:

  1. Azmi W., Sharma K., Sarma P., Mamat R., Anuar S., Rao V., (2013). Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid, Experimental Thermal and Fluid Science 1–9. https://doi.org/10.1016/j.expthermflusci.2013.07.006
  2. Biswakarma, S., Roy, S., Das, B., & Kumar Debnath, B. (2020). Performance analysis of internally helically v-grooved absorber tubes using nanofluid. Thermal Science and Engineering Progress, 18(February), 100538. https://doi.org/10.1016/j.tsep.2020.100538
  3. Bellos E., Tzivanidis C. (2017a). Parametric investigation of nanofluids utilisation in parabolic trough collectors, Thermal Science and Engineering Progress, (2017). https://doi.org/10.1016/j.tsep.2017.05.001
  4. Bellos E. (2018b). A review of concentrating solar thermal collectors with and without nanofluids, Journal of Thermal Analysis and Calorimetry https://doi.org/10.1007/s10973-018-7183-1
  5. Bellos, E., & Tzivanidis, C. (2018c). Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments, 26(August), 105–115. https://doi.org/10.1016/j.seta.2017.10.005
  6. Bobbo, S., Fedele, L., Benetti, A., Colla, L., Fabrizio, M., Pagura, C., & Barison, S. (2012). Viscosity of water based SWCNH and TiO 2 nanofluids. Experimental Thermal and Fluid Science, 36, 65–71. https://doi.org/10.1016/j.expthermflusci.2011.08.004
  7. Brinkman H., (1952). The Viscosity of Concentrated Suspensions and Solutions, Journal of chemical and physics. 20(4), 571–571. https://doi.org/10.1063/1.1700493
  8. Coccia G., Di G., Colla L., Fedele L., Scattolini M., (2016). Adoption of nanofluids in low-enthalpy parabolic trough solar collectors : Numerical simulation of the yearly yield, Energy Conversion and Management. 118 306–319. https://doi.org/10.1016/j.enconman.2016.04.013
  9. Comello S., Glenk G., Reichelstein S. (2017). Levelized Cost of Electricity Calculator : A User Guide, Stanford Graduate School of Business
  10. Dai, Y. ., Huang, H. ., & Wang, R. . (2003). Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28(8), 1295–1304. https://doi.org/10.1016/s0960-1481(02)00227-6
  11. Ebrahimnia-bajestan E., Charjouei M., Niazmand H. (2016). Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers, International Journal of Heat and Mass Transfer. 92 1041–1052. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.107
  12. Faizal M., Saidur R., Mekhilef S., Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid, (2013). IOP Conference Series: Earth and Environmental Science. 16 012004. https://doi.org/10.1088/1755-1315/16/1/012004
  13. Fathabadi H., (2019). Novel solar collector : Evaluating the impact of nanoparticles added to the collector ’ s working fluid , heat transfer fluid temperature and flow rate, Renewable. Energy. https://doi.org/10.1016/j.renene.2019.10.008
  14. Genc, A. M., Ezan, M. A., & Turgut, A. (2018). Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study. Applied Thermal Engineering, 130, 395–407. https://doi.org/10.1016/j.applthermaleng.2017.10.166
  15. Ghasemi S., Ranjbar A., (2016) Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study, Journal of Molecular Liquids. 222 159-166. https://doi.org/10.1016/j.molliq.2016.06.091
  16. Gorji, T. B., & Ranjbar, A. A. (2016). A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector ( DASC ) using graphite , magnetite and silver nanofluids. Solar Energy, 135, 493–505. https://doi.org/10.1016/j.solener.2016.06.023
  17. Hajabdollahi, H., & Hajabdollahi, Z. (2016). Assessment of nanoparticles in thermoeconomic improvement of shell and tube heat exchanger. Applied Thermal Engineering, 106, 827–837. https://doi.org/10.1016/j.applthermaleng.2016.06.061
  18. Hatami, M., & Jing, D. (2017). Optimization of Wavy Direct Absorber Solar Collector ( WDASC ) using. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2017.04.137
  19. Hoseinzadeh S., Sahebi S.A.R., Ghasemiasl R., Majidian A. (2017a) Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water), The european physical journal plus, 132 3-10, DOI: 10.1140/epjp/i2017-11455-3
  20. Hoseinzadeh S., Heyns P., Kariman H., (2019b). Numerical investigation of heat transfer of laminar and turbulent pulsating Al2O3/water nanofluid flow, International Journal of Numerical Methods for Heat and Fluid Flow. 30 1149-1166. DOI: 10.1108/HFF-06-2019-0485
  21. Hoseinzadeh S., Heyns P., Taheri S., Khatir M. (2020c). Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel, International Journal of Numerical Methods for Heat and Fluid Flow. 30 3721-3735. DOI: 10.1108/HFF-09-2019-0671
  22. Hussein, A. M., Sharma, K. V., Bakar, R. A., & Kadirgama, K. (2013). The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/859563
  23. Kalogirou A. (2014) Solar Energy Engineering Processes and Systems 2nd edi. Academic press, Oxford
  24. Kasaiean, A., Sameti, M., Daneshazarian, R., Noori, Z., Adamian, A., & Ming, T. (2018). Heat transfer network for a parabolic trough collector as a heat collecting element using nanofluid. Renewable Energy, 123, 439–449. https://doi.org/10.1016/j.renene.2018.02.062
  25. Kaya, H., Arslan, K., & Eltugral, N. (2018). Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO / Etylene glycol-pure water nano fl uids. Renewable Energy, 122, 329–338. https://doi.org/10.1016/j.renene.2018.01.115
  26. Kang W., Shin Y., Cho H. (2019). Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water, Journal of Mechanical Science and Technology, 33 1477–1485. https://doi.org/10.1007/s12206-019-0249-6
  27. Khin, N., Sint, C., Choudhury, I. A., Masjuki, H. H., & Aoyama, H. (2017). Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. 155, 608–619. https://doi.org/10.1016/j.solener.2017.06.055
  28. Kim, H., Ham, J., Park, C., & Cho, H. (2016). Theoretical investigation of the ef fi ciency of a U-tube solar collector using various nano fl uids. 94, 497–507. https://doi.org/10.1016/j.energy.2015.11.021
  29. Kolekar S., Patil P., (2018). Performance analysis of solar parabolic trough collector system for different concentration of Al2O3 with water as base fluid, International Research Journal of Engineering and Technology, 5, 2472-2479
  30. Krishna Y., Razak R. K. A., Afzal A., (2018). The CFD analysis of flat plate collector- nanofluid as working medium, AIP Conference Proceedings 2039-020062 https://doi.org/10.1063/1.5079021
  31. Kurup, P., Turchi, C. S., Kurup, P., & Turchi, C. S. (2015). Parabolic Trough Collector Cost Update for the System Advisor Model ( SAM ). November
  32. Li Y., Xie H. ,Yu W., Li J., Investigation on heat transfer performances of nanofluids in solar collector, Materials Science Forum. 694 (2011) 33–36. https://doi.org/10.4028/www.scientific.net/MSF.694.33
  33. Ministry of New and Renewable Energy - United Nations Industrial Development Organization (MNRE-UNIDO), (2017). India’s CST Sector - Vision 2022
  34. Mohammad Zadeh, P., Sokhansefat, T., Kasaeian, A. B., Kowsary, F., & Akbarzadeh, A. (2015). Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy, 82, 857–864. https://doi.org/10.1016/j.energy.2015.01.096
  35. Murshed, S. M. S. (2011). Determination of effective specific heat of nanofluids. Journal of Experimental Nanoscience, 6(5), 539–546. https://doi.org/10.1080/17458080.2010.498838
  36. Mwesigye A., Huan Z., Meyer J., (2015a) Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil – Al2O3 nanofluid, Applied Energy. 156 398–412. https://doi.org/10.1016/j.apenergy.2015.07.035
  37. Mwesigye A., Meyer J., (2017b). Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid, Renewable Energy, 119 844-862. https://doi.org/10.1016/j.renene.2017.10.047
  38. Nagarajan P., Subramani J., Suyambazhahan S., Sathyamurthy R. (2014) Nanofluids for solar collector applications : A Review, Energy Procedia. 61, 2416–2434. https://doi.org/10.1016/j.egypro.2014.12.017
  39. Nanofluid Price - Platonic nanotech private limited. India. Quatotation no- PN/2019-20/1907 (Date- 2/10/2020)
  40. Ozsoy A., Corumlu V., (2018). Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nano fluid for commercial applications, Renewable. Energy. 122 26–34. https://doi.org/10.1016/j.renene.2018.01.031
  41. Panchal H., Sadasivuni, K., Muthusamy S., Israr M., Sengottain S. (2021). A concise review on Solar still with Parabolic trough collector. International Journal of Ambient Energy. 1-27 DOI: 10.1080/01430750.2021.1922938
  42. Phelan P., Otanicar T., Taylor R. (2013) Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector Journal of Nanotechnology in Engineering and Medicine, 1–9. https://doi.org/10.1115/1.4007387
  43. Potenza M., Milanese M., Colangelo G., De Risi A., (2017). Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid, Appl. Energy. 203 560–570. https://doi.org/10.1016/j.apenergy.2017.06.075
  44. Prof A., Saleh S., (2013). Evaluation of Convective Heat Transfer and Natural Circulation in an Evacuated Tube Solar Collector, Journal of engineering, 19 613–628
  45. Sabiha M., Saidur R., Mekhilef R. (2015) An experimental study on Evacuated tube solar collector using nanofluids, Transactions on Science and Technology 2 42–49
  46. Sadaghiani, A. K., Yildiz, M., & Koşar, A. (2016). Numerical modeling of convective heat transfer of thermally developing nanofluid flows in a horizontal microtube. International Journal of Thermal Sciences, 109, 54–69. https://doi.org/10.1016/j.ijthermalsci.2016.05.022
  47. Shanthi R , Anandan S., Ramalingam V. (2012). Heat transfer enhancement using nanofluids an overview, Thermal Science 16(2) 423-444. DOI: 10.2298/TSCI110201003S
  48. Siavashi, M., Ghasemi, K., Yousofvand, R., & Derakhshan, S. (2018). Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Solar Energy, 170(January), 252–262. https://doi.org/10.1016/j.solener.2018.05.020
  49. Simpson, S., Schelfhout, A., Golden, C., & Vafaei, S. (2018). Nanofluid thermal conductivity and effective parameters. Applied Sciences (Switzerland), 9(1). https://doi.org/10.3390/app9010087
  50. Subramani J., Nagarajan P., Mahian O., Sathyamurthy R., (2017). Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime Renewable. Energy. https://doi.org/10.1016/j.renene.2017.11.079
  51. Smith, R., Peters, C., & Inomata, H. (2013). Heat transfer and finite-difference methods. In Supercritical Fluid Science and Technology (Vol. 4). https://doi.org/10.1016/B978-0-444-52215-3.00008-8
  52. Sundar, L. S., Sharma, K. V, Singh, M. K., & Sousa, A. C. M. (2017a). Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews, 68(March 2016), 185–198. https://doi.org/10.1016/j.rser.2016.09.108
  53. Sundar, L. S., Naik, M. T., Sharma, K. V, Singh, M. K., & Siva, T. C. (2012b). Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe 3 O 4 magnetic nanofluid. Experimental Thermal and Fluid Science, 37, 65–71. https://doi.org/10.1016/j.expthermflusci.2011.10.004
  54. Sundar, L. S., Singh, M. K., & Sousa, A. C. M. (2014c). Enhanced heat transfer and friction factor of MWCNT – Fe 3 O 4 / water hybrid nano fl uids ☆. International Communications in Heat and Mass Transfer, 52, 73–83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
  55. Taylor R., Pehlan P., Otanicar T., Walker C, Nguyen M., Trimble S., Prasher R. (2011). Applicability of nanofluids in high flux solar collectors, Journal of Renewable and Sustainable Energy.3, 023104 https://doi.org/10.1063/1.3571565
  56. Tong, Y., Kim, J., & Cho, H. (2015). Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube / water nano fl uid. Renewable Energy, 83, 463–473. https://doi.org/10.1016/j.renene.2015.04.042
  57. Tripathi, P. R., & Bhong, M. G. (2016). Estimation of Heat Transfer Coefficient and Pressure Drop in a Solar Collector Using Fresnel Lenses. 5(2), 2014–2017
  58. Vajjha R , Das D., (2012) A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International Journal of Heat and Mass Transfer. 55 4063–4078. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.048
  59. Venkata T., Sekhar R., Prakash R., Nandan G., Muthuraman M., (2018). Performance enhancement of a renewable thermal energy collector using metallic oxide nano fluids, Micro & Nano Letters, 13-2 248–251, DOI: 10.1049/mnl.2017.0410.doi: 10.1049/mnl.2017.0410
  60. Waghole D., Shrivastva R. (2014) Experimental Investigations on Heat Transfer and Friction Factor of Silver Nanofliud in Absorber / Receiver of Parabolic Trough Collector with Twisted Tape Inserts, Energy procedia, 45 558–567, https://doi.org/10.1016/j.egypro.2014.01.060
  61. Yu, W., Xie, H., Li, Y., & Chen, L. (2011). Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology, 9(2), 187–191. https://doi.org/10.1016/j.partic.2010.05.014
  62. Zhang, Z.-X. (2016). Effect of Temperature on Rock Fracture. Rock Fracture and Blasting, 111–133. https://doi.org/10.1016/b978-0-12-802688-5.00005-1

Last update:

  1. The effect of utilising PCMS-nanofluids on the performance of the parabolic trough among storage medium

    Babu Sasi Kumar Subramaniam, Kumaran Palani, Tsegaye Alemayehu Atiso, Mebratu Markos Woldegiorgis. International Journal of Ambient Energy, 43 (1), 2022. doi: 10.1080/01430750.2022.2085796
  2. Prototype of a Solar Collector with the Recirculation of Nanofluids for a Convective Dryer

    Denis Del Sagrario Garcia-Marquez, Isaac Andrade-Gonzalez, Arturo-Moises Chavez-Rodriguez, Mayra I Montero-Cortes, Vania Sbeyde Farias-Cervantes. International Journal of Renewable Energy Development, 11 (4), 2022. doi: 10.14710/ijred.2022.44221
  3. Nanotechnology-integrated phase change material and nanofluids for solar applications as a potential approach for clean energy strategies: Progress, challenges, and opportunities

    Zafar Said, Maham Aslam Sohail, Adarsh Kumar Pandey, Prabhakar Sharma, Adeel Waqas, Wei-Hsin Chen, Phuoc Quy Phong Nguyen, Van Nhanh Nguyen, Nguyen Dang Khoa Pham, Xuan Phuong Nguyen. Journal of Cleaner Production, 416 , 2023. doi: 10.1016/j.jclepro.2023.137736

Last update: 2024-03-28 13:20:50

No citation recorded.