Biobutanol Production Using High Cell Density Fermentation in a Large Extractant Volume

*Rizki Fitria Darmayanti orcid scopus  -  Department of Chemical Engineering, University of Jember, Jalan Kalimantan No. 37, Tegalboto, Jember 68121, Indonesia
Yukihiro Tashiro  -  Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
Kenji Sakai  -  Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
Kenji Sanomoto  -  Bio-Architecture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395,, Japan
Ari Susanti  -  Department of Chemical Engineering, University of Jember, Jalan Kalimantan No. 37, Tegalboto, Jember 68121, Indonesia
Bekti Palupi  -  Department of Chemical Engineering, University of Jember, Jalan Kalimantan No. 37, Tegalboto, Jember 68121, Indonesia
Meta Fitri Rizkiana  -  Department of Chemical Engineering, University of Jember, Jalan Kalimantan No. 37, Tegalboto, Jember 68121, Indonesia
Received: 8 Jan 2020; Revised: 24 May 2020; Accepted: 16 Jun 2020; Published: 15 Oct 2020; Available online: 16 Jul 2020.
Open Access License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Statistics: 718 218
Abstract
Biobutanol is well known as a suitable substitute for gasoline, which can be applied without engine modification. Butanol toxicity to the producer strain causes difficulties to grow strain of higher than 4 g/L dry cell weight and to produce butanol higher than 20 g/L. Fermentation using high initial cell density has been reported to enhance butanol productivity. In addition, oleyl alcohol has been recognized for effective extraction of butanol because of its selectivity and biocompatibility with reduced the effect of toxicity. Butanol fermentation with high cell density and large extractant volume has not been reported and is expected to improve butanol production in a minimum medium volume setting. Clostridium saccharoperbutylacetonicum N1-4, C. beijerinckii NCIMB 8052 (8052), and C. acetobutylicum ATCC 824 (824) were used in this study. Three kinds of media, TYA, TY, and TY-CaCO3, were used in this conventional extractive fermentation. Then, in situ extractive fermentation with Ve/Vb ratios at 0.1, 0.5, 1.0, and 10 were used. Total butanol concentration was defined as the broth-based total butanol, which is the total amount of butanol produced in broth and extractant per the volume of broth. TYA medium yielded the highest total butanol concentrations at N1-4 (12 g/L), 8052 (11 g/L), and 824 (15 g/L), and the highest partition coefficient (3.7) among the three media with similar Ve/Vb ratio at 0.5. N1-4 yielded the highest increment of total butanol production (22 g/L) in the extractive fermentation with high cell density. Low butanol concentration of 0.8 g/L in the broth was maintained using the extractant at a broth volume ratio (Ve/Vb) much lower than 4.4 g/L with a ratio of 0.5. Ve/Vb ratio of 10 which provided 2-fold higher total butanol concentration (28 g/L) than that of 11 g/L obtained using a Ve/Vb ratio of 0.5. These results indicated that a larger volume of extractant to broth improved total butanol concentration by reducing butanol toxicity and led to high medium based butanol yield in fermentation using high cell density. ©2020. CBIORE-IJRED. All rights reserved
Keywords: biobutanol; high cell density; extraction; fermentation; large extractant volume

Article Metrics:

  1. Al-Shorgani, N. K. N. , Kalil, M. S. , & Yusoff, W. M. W. (2011) The effect of different carbon sources on biobutanol production using Clostridium saccharoperbutylacetonicum N1-4. Biotechnol., 10 (3), 280 - 285. https://doi.org/10.3923/biotech.2011.280.285
  2. Bowles, L. K. and Ellefson, W. L. (1985) Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol., 1165-1170. https://doi.org/10.1128/AEM.50.5.1165-1170.1985
  3. Darmayanti, R. F. , Tashiro, Y. , Noguchi, T. , Gao, M. , Sakai,, K., & Sonomoto,K. (2018) Novel biobutanol fermentation at a large extractant volume ratio using immobilized Clostridium saccharoperbutylacetonicum N1-4. J. Biosci. Bioeng., 126 (6), 750-757. https://doi.org/10.1016/j.jbiosc.2018.06.006
  4. Gao, M. , Tashiro, Y. , Wang, Q. , Sakai, K. , & Sonomoto, K. (2016) High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose. J. Biosci. Bioeng., 122 (2), 176 - 182 . https://doi.org/10.1016/j.jbiosc.2016.01.013
  5. Gao, M. , Tashiro, Y. , Yoshida, T. , Zheng, J. , Wang, Q. , Sakai, K., & Sonomoto, K. (2015) Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using 13C tracer experiments. RSC Adv., 5, 8486 - 8495. https://doi.org/10.1039/C4RA09571E
  6. Gron, S. , Biedermann, K. , & Emborg, C. (1996) Mathematical modeling of proteinase A overproduction by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 44,724-730. https://doi.org/10.1111/j.1749-6632.1996.tb40574.x
  7. Han, B., Ujor, V., Lai, L. B., Gopalan, V., & Ezeji, T. C. (2013) Use of Proteomic Analysis To Elucidate the Role of Calcium in Acetone-Butanol-Ethanol Fermentation by Clostridium beijerinckii NCIMB 8052. Appl. Environ. Microbiol., 79 (1), 282-293. https://doi.org/10.1128/AEM.02969-12
  8. Keis, S., Shaheen, R., & Jones, D. T. (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp, nov. https://doi.org/10.1099/00207713-51-6-2095
  9. Kim, T. B. , Lee, Y. J. , Kim, P. , Kim, C. S., & Oh, D. K. (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotech. Lett., 26, 623-627. https://doi.org/10.1023/B:BILE.0000023019.02411.54
  10. Lapuerta, M., Ballesteros, R., & Barba, J. (2017) Strategies to introduce n-butanol in gasoline blends. Sustainability 9, 589-598. https://doi.org/10.3390/su9040589
  11. Li, X. , Li, Z. G. , & Shi, Z. P. (2014) Metabolic flux and transcriptional analysis elucidate higher butanol/acetone ratio feature in ABE extractive fermentation by Clostridium acetobutylicum using cassava substrate. Bioresour. Bioprocess., 1, 1 - 13. https://doi.org/10.1186/s40643-014-0013-9
  12. Lu, C., Zhao, J., Yang, S.T., & Wei, D. (2012) Fed-Batch Fermentation for n-Butanol Production from Cassava Bagasse Hydrolysate in a Fibrous Bed Bioreactor with Continuous Gas Stripping. Bioresource Technology, 104, 380-387. https://doi.org/10.1016/j.biortech.2011.10.089
  13. Madihah, M. S. ,Ariff, A. B. , Sahaid, K. M., Suraini, A. A., & Karim, M. I. A. (2001) Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World J. Microbiol. Biotechnol., 17, 567 - 576. https://doi.org/10.1023/A:1012351112351
  14. Merola, S. S., Tornatore, C., Marchitto, L., Valentino, G., & Corcione. F. E. (2012) Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine. Int. J. Energy Environ. Eng., 3, 1-14. https://doi.org/10.1186/2251-6832-3-6
  15. Mun, L. T. , Ishizaki, A. , Yoshino, S. , & Furukawa, K. (1995) Production of acetone, butanol and ethanol from palm oil waste by Clostridium saccharoperbutylacetonicum N1-4. Biotechnol. Lett., 17 (6), 649 - 654. https://doi.org/10.1007/BF00129394
  16. Nahringbauer, I. (1970) Hydrogen Bond Studies. 39. Reinvestigation of the Crystal Structure of Acetic Acid (at +5 degrees C and -190 degrees C). Acta Chem. Scand., 24 (2), 453-462. https://doi.org/10.3891/acta.chem.scand.24-0453
  17. Nakayama, S. ,Kiyoshi, K. , Kadokura, T. , & Nakazato, A. (2011) Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl. Environ. Microbiol., 77 (18), 6470-6475. https://doi.org/10.1128/AEM.00706-11
  18. Noguchi, T. , Tashiro, Y. , Yoshida, T. , Zheng, J. , Sakai, K. , & Sonomoto, K. (2013) Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. J. Biosci. Bioeng., 116 (6), 716 - 721. https://doi.org/10.1016/j.jbiosc.2013.05.030
  19. Oshiro, M. , Hanada, K., Tashiro, Y. , & Sonomoto, K. (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl. Microbiol. Biotechnol., 87,1177-1185. https://doi.org/10.1007/s00253-010-2673-5
  20. Pierrot, P., Fick, M., & Engasser, J. M. (1986) Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling. Biotech. Lett., 8, 253-256. https://doi.org/10.1007/BF01030507
  21. Qureshi, N. , Badal, Saha, B.C, Hecotr, R.E., & Cotta, M.A. (2008) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass and Bioenergy, 32 (12), 1353-1358. https://doi.org/10.1016/j.biombioe.2008.04.009
  22. Ramey, D. and Yang, S. T. (2004) Production of Butyric Acid and Butanol from Biomass. U. S. Department of Energy Final Report. https://doi.org/10.2172/843183
  23. Ranjan, A., Vinjayan, & Moholkar, S. (2012) Biobutanol: science, engineering, and economics. Int. J. Energy Res., 36, 277-323. https://doi.org/10.1002/er.1948
  24. Roffler, S. R. , Blanch, H. W., & Wilke,C. R. (1987) In-situ recovery of butanol during fermentation. Bioprocess Eng., 2, 1 - 12. https://doi.org/10.1007/BF00369221
  25. Rosini, G. (1986) Wine-making by cell-recycle-batch fermentation process. Appl. Microbiol. Biotechnol., 24, 140-143. https://doi.org/10.1007/BF00250062
  26. Sakuragi, H. , Kuroda, K. , & Ueda, M. (2011) Molecular Breeding of Advanced Microorganisms for Biofuel Production. J. Biomed. Biotechnol., ID 416931, 1 - 11. https://doi.org/10.1155/2011/416931
  27. Schlote, D. and Gottschalk G. (1986) Effect of cell recycle on continuous butanol-acetone fermentation with Clostridium acetobutylicum under phosphate limitation. Appl. Microbiol. Biotechnol., 24, 1-5. https://doi.org/10.1007/BF00266276
  28. Tashiro, Y. , Takeda, K. , Kobayashi, G. , Sonomoto, K. , Ishizaki, A. , & Yoshino, S. (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng., 98 (4), 263-268. https://doi.org/10.1016/S1389-1723(04)00279-8
  29. Tashiro, Y. , Yoshida, T. , Noguchi, T. , & Sonomoto, K. (2013) Recent advances and future prospects for increased butanol production by acetone‐butanol‐ethanol fermentation. Eng. Life Sci., 13, 432-445. https://doi.org/10.1002/elsc.201200128
  30. Thang, V. H. , Kanda, K. , & Kobayashi, G. (2010) Production of Acetone-Butanol-Ethanol (ABE) in Direct Fermentation of Cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl. Biochem. Biotechnol., 161, 157-170. https://doi.org/10.1007/s12010-009-8770-1
  31. Yang, X. and Tsao, G. T. (1995) Enhanced acetone‐butanol fermentation using repeated fed‐batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption. Biotechnol. Bioeng., 47 (4), 444-450. https://doi.org/10.1002/bit.260470405
  32. Yao, D. , Dong, S., Wang, P. , Chen, T. , Wang, J. , Yue, Z. B. , & Wang, Y. (2017) Robustness of Clostridium saccharoperbutylacetonicum for acetone-butanol-ethanol production: Effects of lignocellulosic sugars and inhibitors. Fuel, 208, 549-557. https://doi.org/10.1016/j.fuel.2017.07.004
  33. Zheng, J. , Tashiro, Y. , Wang, Q. , Sakai, K. , & Sonomoto, K. (2015) Feasibility of acetone-butanol-ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation. Appl. Energy, 140, 113-119. https://doi.org/10.1016/j.apenergy.2014.11.037
  34. Zverlov,V. V. , Berezina, O. , Velikodvorskaya, G. A. , & Schwarz, W. H. (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol., 71, 587-597. https://doi.org/10.1007/s00253-006-0445-z

No citation recorded.