skip to main content

An Enhanced Solar Hybrid Brayton and Rankine Cycles with Integrated Magnetohydrodynamic Conversion System for Electrical Power Generation

Department of Electrical, Electronic & Computer Engineering, Cape Peninsula University of Technology, P. O. Box 1906, Bellville 7535, Cape Town, South Africa

Received: 11 Dec 2020; Revised: 16 Apr 2021; Accepted: 8 May 2021; Available online: 20 May 2021; Published: 1 Nov 2021.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In many developing countries,the use of conventional power plants to generate electricity is not meeting the increasing demands. Therefore, it has become important to find sustainable alternatives. In the present study, a solar hybrid combined cycle power plant consisting of a solar thermal plant, large-scale gas and steam turbines, and a magnetohydrodynamic generator has been investigated under oxy-fuel combustion. The performance analysis of this system under fuel pressure rate varying from 10 to 25 bar was conducted using Cycle Tempo software. The analysis of the gas and steam combined cycle shows that the net powers and the net efficiencies obtained ranged from 98 MWe to 134 MWe and 30.5% to 40%, respectively. In addition, the integration of the magnetohydrodynamic generator to the combined cycle led to an increase in the overall power from 169 MWe to 205 MWe. Moreover, it is seen that the fuel mass rate (2.81 kg/s) obtained in the gas turbine system under oxy-fuel combustion is significantly reduced when compared to conventional systems. The incorporation of solar energy and oxy-fuel combustion in the gas turbine system has increased the combustor inlet and outlet temperature and reduced the fuel consumption. From these observations, the solar hybrid system proposed in this study does not only generates electric power but also reduce the turbine exhaust fumes and CO2 emissions, which is a key factor in minimizing environment pollution.
Fulltext View|Download
Keywords: CSP plant; conventional power plants; MHD generator; pressurised air; flue gas; electric power.
Funding: Cape Peninsula University of Technology

Article Metrics:

  1. Ahmad, A.D., Abubaker, A.M., Najjar, Y.S.H. & Manaserh, Y.M.A. (2020). Power boosting of a combined cycle power plant in Jordan: An integration of hybrid inlet cooling & solar systems, Energy Conversion and Management, 214,112894. DOI: 10.1016/j.enconman.2020.112894
  2. Ahmed, H.O., Hesham, E.A. & Hamza, H.S. (2018). CFD Analysis of De Laval Nozzle Geometry & Effect of Gas Pressure Variation at the Entrance. International Journal for Research in Applied Science & Engineering Technology, 6, 350-361. https://www.ijraset.com/archive-detail.php?AID=81 (accessed 26 April 2021)
  3. Ajith, K.R. & Jinshah, B.S. (2013). Magnetohydrodynamics Power Generation. International Journal of Scientific and Research Publications. 3, 1-11. ISSN: 2250-3153
  4. Aldali, Y. & Morad, K. (2016). Numerial simulation of the integrated solar/North Benghazi combined power plant. Applied Thermal Engineering, 108, 785–792. DOI: 10.1016/j.applthermaleng.2016.07.178
  5. Allam, R.J., Palmer, M.R., William Brown, G., Fetvedt, J., Freed, D., Nomoto, H., Itoh, M., Okita, N. & Jones, C. (2013). High Efficiency and Low Cost of Electricity Generation from Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide. Energy Procedia, 37, 1135-1149. DOI: 10.1016/j.egypro.2013.05.211
  6. Amelio, M, Ferraro, V, Marinelli, V. & Summaria, A. (2014). An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors. Energy, 69, 742–8. DOI: 10.1016/j.energy.2014.03.068
  7. Anderson, R.E., Mac Adam, S., Viteri, F., Davies, D.O., Downs, J.P. & Paliszewski, A. (2008). Adapting gas turbines tozero emission oxy-fuel power plants. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June, 781–791. DOI: 10.1115/GT2008-51377
  8. Antonanzas, J, Jimenez, E, Blanco, J. & Antonanzas-Torres, F. (2014). Potential solar thermal integration in Spanish combined cycle gas turbines. Renewable and Sustainable Energy Reviews, 37, 36–46. DOI: 10.1016/j.rser.2014.05.006
  9. Anumaka, M.C. (2014). Feasible Classification of Magnetohydrodynamic (MHD) Generating Power Plant. International Journal of Innovative Technology and Research, 2, 1078-1084. ISSN: 2320–5547, http://www.ijitr.com/index.php/ojs/article/view/347 (accessed 9 November 2020)
  10. Augsburger, G., Das, A.K., Boschek, E. & Clark, M.M. (2015). Thermo-Mechanical and Optical Optimization of the Molten Salt Receiver for a Given Heliostat Field. SolarPACES Conference proceedings, 030005. DOI: 10.1063/1.49490
  11. Augsburger, G. (2013). Thermo-economic optimisation of large solar tower power plants. Doctoral Thesis, École Polytechnique Federale de Laussane. DOI: 10.5075/epfl-thesis-5648
  12. Ayeleso, A.O. & Kahn, M.T.E. (2018). Modelling of a combustible ionised gas in thermal power plants using MHD conversion system in South Africa. Journal of King Saud University – Science, 30, 367-374. DOI: 10.1016/j.jksus.2017.01.007
  13. Baskar, P. & Senthilkumar, A. (2016). Effect of oxygen enriched combustion on pollution and performance characteristics of a diesel engine. Engineering Science and Technology, an International Journal, 19, 438-443. DOI: 10.1016/j.jestch.2015.08.011
  14. Bedick, C.R., Kolczynski, L. & Woodside, C.R. (2017). Combustion plasma electrical conductivity model development for oxy-fuel MHD applications. Combustion and Flame, 181, 225-238. DOI: 10.1016/j.combustflame.2017.04.001
  15. Behar, O., Khellaf, A. & Mohammedi, K. (2013). A review of studies on central receiver solar thermal power plants. Renewable and Sustainable Energy Reviews, 23, 12–39
  16. Buck, R., Bra¨uning, T., Denk, T., Pfa¨nder, M., Schwarzbo¨zl, P. & Tellez, F. (2002). Solar-hybrid gas turbine-based power tower systems (REFOS). Journal of Solar Energy Engineering, 124, 2–9. DOI: 10.1115/1.1445444
  17. Buck, R., Giuliano, S. & Uhlig, R. (2017). Central tower systems using the Brayton cycle. Elsevier Ltd. DOI: 10.1016/B978-0-08-100516-3.00016-2
  18. Butcher, C.J. & Reddy, B.V. (2007). Second law analysis of a waste heat recovery based power generation system. International Journal of Heat and Mass Transfer, 50, 2355-2363. DOI: 10.1016/j.ijheatmasstransfer.2006.10.047
  19. Butt, A.H. & Arshad, A. (2015). Design and analysis of a clustered nozzle configuration and comparison of its thrust. Student Research Paper Conference. 2, 105–109
  20. Deshpande, N.D., Vidwans, S.S., Mahale, P.R., Joshi, R.S. & Jagtap, K.R. (2014). Theoretical & CFD analysis of De Laval Nozzle. International Journal of Mechanical and Production Engineering, 2, 33–36. DOI: http://iraj.doionline.org/dx/IJMPE-IRAJ-DOIONLNE-640
  21. Dumitrascu, G., Marin, O., Charon, O. & Horbaniuc, B. (2001). The influence of the compression interstage cooling by adiabatic humidification of the steam injection and of the oxygen enriched combustion upon the gas turbine cogeneration systems. 2nd Heat Powered Cycles Conference Conservatoire national des arts et métiers, Paris
  22. Eason, G., Noble, B. & Sneddon, I.N. (2016). Energy Systems in Electrical Engineering. Handbook of Solar Energy Theory, Analysis and Applications, Springer. DOI: 10.1007/978-981-10-0807-8
  23. EL Hassani, S.E., Ouali, H.A.L., Raillani, B., Moussaoui, M.A., Mezrhab, A. & Amraqui, S. (2020). Thermal Performance of Solar Tower Using Air as Heat Transfer Fluid under MENA Region Climate. 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, Morocco, 1-4
  24. Ferrari, N., Mancuso, L., Davison, J., Chiesa, P., Martelli, E. & Romano, M.C. (2017). Oxy-Turbine for Power Plant with CO2 Capture. Energy Procedia, 114, 471–480. DOI: 10.1016/j.egypro.2017.03.1189
  25. Garcia, P., Ferriere, A., Flamant, G., Costerg, P., Soler, R. & Gagnepain, B. (2008). Solar field efficiency and electricity generation estimations for a hybrid solar gas turbine project in France. Journal of Solar Energy, 82, 189–197. DOI: 10.1115/1.2807211
  26. Giuliano, S., Schillings, C., Hoyer-Klick, C., Al Nuaimi, S. & Al Obaidli, A. (2008). USHYNE – Upscaling of solar-hybrid gas turbine cogeneration units, Final Report
  27. Heller, P., Pfänder, M., Denk, T., Tellez, F., Valverde, A., Fernandez, J. & Ring, A. (2006). Test and Evaluation of a Solar Powered Gas Turbine System. Solar Energy, 80, 1225 –1230. DOI: https://doi.org/10.1016/j.solener.2005.04.020
  28. Hischier, I., Hess, D., Lipiński, W., Modest, M. & Steinfeld, A. (2009). Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles. Journal of Thermal Science and Engineering Applications, 1, 1-6 (041002). DOI: 10.1115/1.4001259
  29. Ho, C.K. & Iverson, B.D. (2014). Review of high temperature central receiver designs for concentrating solar power. Renewable and Sustainable Energy Reviews, 29, 835-846. DOI: 10.1016/j.rser.08.099
  30. Ho, C.K., Khalsa, S.S. & Siegel, N.P. (2009). Modelling on-sun tests of a prototype solid particle receiver for concentrating solar power processes and storage. Proceedings of ES2009 Energy Sustainability, July 19-23, San Francisco, California USA. DOI: 10.1115/ES2009-90035
  31. Hong, J., Chaudhry, G., Brisson, JG., Field, R., Gazzino, N. & Ghoniem, A. (2009). Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy, 34, 1332-1340. DOI: 10.1016/j.energy.2009.05.015
  32. Horbaniuc, B., Marin, O., Dumitrascu, G. & Charon, O. (2004). Oxygen enriched combustion in supercritical steam boilers, Energy, 29, 427-448. DOI: 10.1016/j.energy.2003.10.009
  33. Hoseinzadeh, S., Ghasemi, R. & Heyns, P.S. (2020a). Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems. Renewable Energy, 160, 323-332. DOI: 10.1016/j.renene.2020.06.149
  34. Hoseinzadeh, S., Ghasemi, R., Javadi, M.A. & Heyns, P.S. (2020b). Performance evaluation and economic assessment of a gas power plant with solar and desalination integrated systems. Desalination and Water Treatment, 174, 11–25. DOI: 10.5004/dwt.2020.24850
  35. Jabbar, M.Q. (2014). Improvement of performance operation and cycle efficiency of Al Anbar combined power plant. FPEPM 2014: Annual Conference of the Faculty of Power Engineering and Power Machines, Bulgaria
  36. Kadhim, H.J., Kadhim, T.J. & Alhwayzee, M.H. (2019). A Comparative Study of Performance of Al-Khairat Gas Turbine Power Plant for Different Types of Fuel. IOP Conference Series: Materials Science and Engineering, 671, 012015. DOI: 10.1088/1757-899X/671/1/012015
  37. Khan, S.A., Aabid, A. & Baig, M.A.A. (2018). CFD analysis of CD nozzle and effect of nozzle pressure ratio on pressure and velocity for suddenly expanded flows. International Journal of Mechanical and Production Engineering Research and Development, 8, 1147-1158. DOI: 10.24247/ijmperdjun2018119
  38. Kalina, J. (2012). Comparative analysis of alternative configurations of the mercury 50 recuperated gas-turbine-based biomass integrated gasification combined heat and power (BIGCHP) plant. Energy Fuel, 26, 6452-6465. DOI: 10.1021/ef201624h
  39. Kalogirou, S.A. (2011). Concentrating solar power plants for electricity and desalinated water production. World Renewable Energy Congress, 8-13 May, Linkoping, Sweden. DOI: 10.3384/ecp110573881
  40. Kayabasßı, E., Furtun, F. & Özkaymak, M. (2017). Investigation of Heat Recovery and Saving Potential of Hot Stoves in Blast Furnaces Investigation of Heat Recovery and Saving Potential of Hot Stoves in Blast Furnaces. 3rd Iron and Steel Symposium (UDCS’17), 20–24 January. http://indexive.com/Paper/2160/investigation-of-heat-recovery-and-saving-potential-of-hot-stoves-in-blast-furnaces (accessed 10 November 2020)
  41. Kayukawa, N. (2004). Open cycle magnetohydrodynamic electrical power generation: a review and future perspectives. Progress in Energy and Combustion Science, 30, 33–60. DOI: 10.1016/j.pecs.2003.08.003
  42. Khalili, S., Dehkordi, A.J. & Giahi, M.H. (2015). Investigating the effect of channel angle of a subsonic MHD (Magneto-Hydro-Dynamic) generator on optimum efficiency of a triple combined cycle. Energy, 85, 543-555. DOI: 10.1016/j.energy.2015.03.064
  43. Korzynietz, R., Brioso, J.A., del Río, A., Quero, M., Gallas, M., Uhligc, R., Ebert, M, Buck, R. & Teraji, D. (2016). Solugas – Comprehensive analysis of the solar hybrid Brayton plant. Solar Energy, 135, 578–589. DOI: 10.1016/j.solener.2016.06.020
  44. Kotowicz, J., Michalski, S. & Brzęczek, M. (2019). The Characteristics of a Modern Oxy-Fuel Power Plant. Energies, 12, 1-34. DOI: 10.3390/en12173374
  45. Lee, G.H., & Kim, H.R. (2021). Numerical study of Faraday-type nitrogen plasma magnetohydrodynamic generator. Journal of the Korean Physical Society, 78, 600-606. DOI: 10.1007/s40042-021-00116-z
  46. Lundberg, W.L., Veyo, S.E. & Moeckel, M.D. (2003). A high-efficiency solid oxide fuel cell hybrid power system using the Mercury 50 advanced turbine systems gas turbine. ASME Journal of Engineering for Gas Turbines and Power, 125, 51-58. DOI: 10.1115/1.1499727
  47. Malan, K.J. (2014). A Heliostat Field Control System. Master of Engineering Dissertation, Stellenbosch University
  48. Manente, G. (2016). High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design. Energy Conversion and Management, 111, 186–97. DOI: 10.1016/j.enconman.2015.12.079
  49. Moran, M. & Shapiro, H. (2010). Fundamentals of Engineering Thermodynamics. 6th ed. Wiley India Pvt. Limited. ISBN: 978-1-119-39138-8
  50. Nowak, W., Złotkowski, M. & Alharbi, A.A. (2019). Analysis of a micro-oxy gas turbine for variable oxidizer and fuel parameters. Research & Development in Power Engineering, 137, 1-6, 01005. DOI: 10.1051/e3sconf/201913701005
  51. Nurhilal, O., Mulyana, C., Suhendi, N. & Sapdiana, D. (2016). The simulation of organic Rankine cycle power plant with n-pentane working fluid. AIP Conference Proceedings, 1712, 040003-1–040003-5. DOI: 10.1063/1.4941880
  52. Oyedepo, S.O., Fagbenle, R.O. & Adefila, S.S. (2017). Modelling and assessment of effect of operation parameters on gas turbine power plant performance using first and second laws of thermodynamics. American Journal of Engineering and Applied Sciences, 10, 412–430. DOI: 10.3844/ajeassp.2017.412.430
  53. Parsodkar, R.R. (2015). Magneto Hydrodynamics Generator. Journal of Advance Research in Electrical & Electronics Engineering, 2, 01-07. https://www.nnpub.org/index.php/EEE/article/view/210 (accessed 9 November 2020)
  54. Petrakopoulou, F., Sánchez-Delgado, S., Marugán-Cruz, C. & Santana, D. (2017). Improving the efficiency of gas turbine systems with volumetric solar receivers. Energy Conversion and Management, 149, 579–592. DOI: 10.1016/j.enconman.2017.07.058
  55. Pitz-Paal, R., Dersch, J. & Milow, B. (2005). European concentrated solar thermal road-mapping (ECOSTAR). EU funded study, SES6-CT-2003-502578. DOI: https://cordis.europa.eu/project/id/502578
  56. Poonthamil, R., Prakash, S. & Anand Kumar Varma, S. (2016). Enhancement of Power Generation in Thermal Power Plant Using MHD System. IOSR Journal of Mechanical and Civil Engineering, 1, 142-146. DOI: 10.9790/1684-130502142146
  57. Poživil, P., Aga, V., Zagorskiy, A. & Steinfeld, A. (2014). A pressurized air receiver for solar-driven gas turbines. Energy Procedia, 49, 498–503. DOI: 10.1016/j.egypro.2014.03.053
  58. Rahman, M.M., Ibrahim, T.K., Kadirgama, K., Mamat, R. & Bakar, R.A. (2011). Influence of operation conditions and ambient temperature on performance of gas turbine power plant. Advanced Materials Research, 189-193, 3007–3013. DOI: 10.4028/www.scientific.net/AMR.189-193.3007
  59. Rajesh, R. & Kishore, P.S. (2018). Thermal Efficiency of Combined Cycle Power Plant. International Journal of Engineering and Management, 8, 229–234. DOI: 10.31033/ijemr.8.3.30
  60. Saghafifar, M. & Gadalla, M. (2016). Thermo-economic analysis of conventional combined cycle hybridization: United Arab Emirates case study. Energy Conversion and Management, 111, 358–74. DOI: 10.1016/j.enconman.2015.12.016
  61. Self, S., Rosen, M. & Reddy, B. (2018). Effects of Oxy-Fuel Combustion on Performance of Heat Recovery Steam Generators. European Journal of Sustainable Development Research, 2, 22. DOI: 10.20897/ejosdr/69787
  62. Sivaram, A.R., Kanimozhivendhan, G., Rajavel R. & Durai Raj, V.P. (2015). Performance Investigation of a closed cycle Magneto Hydrodynamics Power plant with liquid metal as heat source. Indian journal of science and technology, 8, 1-6. DOI: 10.17485/ijst/2015/v8i21/78473
  63. Song, T.W., Sohn, J.L., Kim, T.S. & Ro, S.T. (2006). Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine. Journal of Power Sources, 158, 361−367. DOI: 10.1016/j.jpowsour.2005.09.031
  64. Spelling, J.D. (2013). Hybrid solar gas-turbine power plants – a thermo-economic analysis. Doctoral thesis. KTH Royal Institute for technology, Stockholm
  65. Solgate Report, Ormat, Ciemat, Dlr, Solucar, Tuma. (2005). Solar hybrid gas turbine electric power system. ISBN 92-894-4592-0
  66. Takayanagi, S., Takahashi, K., Sasaki, T., Aso, T. & Harada, N. (2014). Theoretical Power Output from a Capacitive-Coupled Power Extraction Magneto-hydrodynamic Generator with a Sinusoidal Alternating Magnetic Field. Plasma and Fusion Research, 9, 1206094. DOI: 10.1585/pfr.9.1206094
  67. Tchanche, B.F., Loonis, P., Petrissans, M. & Ramenah, H. (2013). Organic Rankine cycle systems Principles, opportunities and challenges. In: Microelectronics (ICM), 2013, 25th International Conference on Microelectronics, IEEE, 1–4, Beirut. DOI: 10.1109/icm.2013.6735014
  68. Vogel, W. (2010). Large-scale solar thermal power: technologies, costs, and development. Wiley-VCH. ISBN: 978-3-527-40515-2
  69. Wang, S., Fu, Z., Sajid, S., Zhang, T. & Zhang, G. (2018). Thermodynamic and Economic Analysis of an Integrated Solar Combined Cycle System. Entropy, 20, 313. DOI: 10.3390/e20050313
  70. Wallentinsen, B.S. (2016). Concentrated Solar Power Gas Turbine Hybrid with Thermal Storage. Master Thesis, Norwegian University of Science and Technology. DOI: 10.1016/j.rser.2013.02.017
  71. Zhang, H.L., Baeyens, J., Degrève, J. & Cacères, G. (2013). Concentrated solar power plants: Review and design methodology. Renewable and Sustainable Energy Reviews, 22, 466-481. DOI: 10.1016/j.rser.2013.01.032

Last update:

No citation recorded.

Last update:

No citation recorded.