skip to main content

Influence of Various Basin Types on Performance of Passive Solar Still: A Review

1Institute of Maritime, Ho Chi Minh city University of Transport, Ho Chi Minh city, Viet Nam

2School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

3Center of Biomass and Renewable Energy (CBIORE), Diponegoro University, Indonesia

4 School of Postgraduate Studies, Diponegoro University, Indonesia

5 Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH), Ho Chi Minh city, Viet Nam

View all affiliations
Received: 3 May 2021; Revised: 6 Jun 2021; Accepted: 10 Jun 2021; Available online: 15 Jun 2021; Published: 1 Nov 2021.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Passive solar still is the simplest design for distilling seawater by harnessing solar energy. Although it is undeniable that solar still is a promising device to provide an additional freshwater source for global increasing water demand, low thermal efficiency along with daily distillate yield are its major disadvantages. A conventional solar still can produced 2 to 5 L/m2day. Various studies have been carried out to improve passive solar stills in terms of daily productivity, thermal efficiency, and economic effectiveness. Most of the researches that relate to the daily output improvement of passive solar still concentrates on enhancing evaporation or/and condensation processes. While the condensation process is influenced by wind velocity and characteristics of the condensed surface, the evaporation process is mainly affected by the temperature of basin water. Different parameters affect the brackish water temperature such as solar radiation, design parameters (for example water depth, insulators, basin liner absorptivity, reflectors, sun tracking system, etc). The inclined angle of the top cover is suggested to equal the latitude of the experimental place. Moreover, the decrease of water depth was obtained as a good operational parameter, however, the shallow water depth is required additional feed water for ensuring no dry spot existence. Reflectors and sun-tracking systems help solar still absorb as much solar intensity as possible. The internal reflector can enhance daily yield and efficiency of stepped solar still up to 75% and 56% respectively, whereas, passive solar still with the support of a sun-tracking system improved daily yield up to 22%. Despite large efforts to investigate the impact of the different parameters on passive solar distillation, the effect of the basin liner (including appropriate shapes and type of material), needs to be analyzed for improvement in practical utilization. The present work has reviewed the investigation of the solar still performance with various types of basin liner. The review of solar stills has been conducted critically with rectangular basin, fins basin, corrugated basin, wick type, steps shape, and cylindrical shape basin with variety of top cover shapes. The findings from this work conclude that the basin liner with a cylindrical shape had better performance in comparison with other metal types and provides higher freshwater output. Stepped type, inclined, fin absorber, and corrugated shapes had the efficient performance.  Further exploration revealed that copper is the best-used material for the productivity of passive solar still.

Fulltext View|Download
Keywords: renewable energy; water production; passive solar still; distillate yield; absorber basin

Article Metrics:

  1. Abdallah S, Badran OO. 2008. Sun tracking system for productivity enhancement of solar still. Desalination. 220(1-3):669-76,
  2. Abdelmaksoud W, Almaghrabi M, Alruwaili M, Alruwaili A. 2020. Improving water productivity in active solar still. Energy Sources, Part A Recover. Util. Environ. Eff. 0(0):1-14,
  3. Abdul MAK, Khan, A G Bhuibhar PPS. 2018. Performance & analysis and optimization of stepped type solar still. Int. J. Eng. Sci. Res. Technol. 7(3):69-74
  4. Abed FM, Kassim MS, Rahi MR. 2017. Performance improvement of a passive solar still in a water desalination. Int. J. Environ. Sci. Technol. 14(6):1277-84,
  5. Abu-Arabi M, Zurigat Y, Al-Hinai H, Al-Hiddabi S. 2002. Modeling and performance analysis of a solar desalination unit with double-glass cover cooling. Desalination. 143(2):173-82
  6. Abujazar MSS, Fatihah S, Lotfy ER, Kabeel AE, Sharil S. 2018. Performance evaluation of inclined copper-stepped solar still in a wet tropical climate. Desalination. 425(August 2017):94-103
  7. Agboola OP, Al-Mutaz IS, Orfi J, Egelioglu F. 2014. Economic investigation of different configurations of inclined solar water desalination systems. Adv. Mech. Eng. 2014:
  8. Agrawal A, Rana RS. 2018. Energy and exergy analysis of single slope single basin solar still in Indian condition: An experimental analysis. Mater. Today Proc. 5(9):19656-66
  9. Agrawal A, Rana RS, Srivastava PK. 2017. Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resour. Technol. 3(4):466-82
  10. Alwan NT, Shcheklein S, Ali O. 2020. Investigation of the coefficient of heat transfer and daily cumulative production in a single-slope solar distiller at different water depths. Energy Sources, Part A Recover. Util. Environ. Eff. 0(0):1-18
  11. Anwar K, Deshmukh S. 2018. Assessment and mapping of solar energy potential using artificial neural network and GIS technology in the southern part of India. Int. J. Renew. Energy Res. 8(2):974-85
  12. Anwar K, Deshmukh S. 2020. Parametric study for the prediction of wind energy potential over the southern part of India using neural network and geographic information system approach. Proc. Inst. Mech. Eng. Part A J. Power Energy. 234(1):96-109
  13. Ardeshiri F, Salehi S, Peyravi M, Jahanshahi M, Amiri A, Rad AS. 2018. PVDF membrane assisted by modified hydrophobic ZnO nanoparticle for membrane distillation. Asia-Pacific J. Chem. Eng. 13(3):1-12
  14. Arun Kumar S, Suresh Mohan Kumar P. 2021. Improving the operating time of the multi slope shape solar still. Energy Sources, Part A Recover. Util. Environ. Eff. 1-13
  15. Arunkumar T, Denkenberger D, Ahsan A, Jayaprakash R. 2013a. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination. 314:189-92
  16. Arunkumar T, Jayaprakash R, Ahsan A, Denkenberger D, Okundamiya MS. 2013b. Effect of water and air flow on concentric tubular solar water desalting system. Appl. Energy. 103:109-15,
  17. Arunkumar T, Jayaprakash R, Denkenberger D, Ahsan A, Okundamiya MS, et al. 2012. An experimental study on a hemispherical solar still. Desalination. 286:342-48,
  18. Arunkumar T, Velraj R, Denkenberger D, Sathyamurthy R, Vinothkumar K, et al. 2016. Effect of heat removal on tubular solar desalting system. Desalination. 379:24-33,
  19. Attia MEH, Kabeel AE, Abdelgaied M, Essa FA, Omara ZM. 2021. Enhancement of hemispherical solar still productivity using iron, zinc and copper trays. Sol. Energy. 216:295-302
  21. Awasthi A, Kumari K, Panchal H, Sathyamurthy R. 2018. Passive solar still: recent advancements in design and related performance. Environ. Technol. Rev. 7(1):235-61,
  22. Bait O, Si-Ameur M. 2018. Enhanced heat and mass transfer in solar stills using nanofluids: A review. Sol. Energy. 170(June):694-722,
  23. Buabbas SK, Al-Obaidi MA, Mujtaba IM. 2020. A parametric simulation on the effect of the rejected brine temperature on the performance of multieffect distillation with thermal vapour compression desalination process and its environmental impacts. Asia-Pacific J. Chem. Eng. 15(6):1-14,
  24. Dhiman NK. 1988. Transient analysis of a spherical solar still. Desalination. 69(1):47-55,
  25. Dsilva Winfred Rufuss D, Iniyan S, Suganthi L, Davies PA. 2016. Solar stills: A comprehensive review of designs, performance and material advances. Renew. Sustain. Energy Rev. 63:464-96,
  26. El-Bahi A, Inan D. 1999. A solar still with minimum inclination, coupled to an outside condenser. Desalination. 123(1):79-83,
  27. El-Maghlany WM. 2015. An approach to optimization of double slope solar still geometry for maximum collected solar energy. Alexandria Eng. J. 54(4):823-28,
  28. El-Sebaii AA, El-Bialy E. 2015. Advanced designs of solar desalination systems: A review. Renew. Sustain. Energy Rev. 49:1198-1212,
  29. Elashmawy M. 2020. An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination. 411(2017):1-8,
  30. Elshamy SM, El-Said EMS. 2018. Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber. J. Clean. Prod. 195:328-39,
  31. Fath H. E. S., El-Samanoudy M., Fahmy K. HA. 2003. Thermal - Economical Analysis and Comparison Between Pyramid Configuration and Signal Slope Solar Stills. Seventh Int. Water Technol. Conf. Egypt 1-3 April 2003. (April):565-90,
  32. Gnanaraj SJP, Velmurugan V. 2019. An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination. 467(September 2018):12-28
  33. Handayani NA, Ariyanti D. 2012. Potency of solar energy applications in Indonesia. Int. J. Renew. Energy Dev. 1(2):33-38,
  34. Hanson A, Zachritz W, Stevens K, Mimbela L, Polka R, Cisneros L. 2004. Distillate water quality of a single-basin solar still: Laboratory and field studies. Sol. Energy. 76(5):635-45
  35. Hoang AT, Le AT. 2019. A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff. 41(5):584-99
  36. Hoang AT, Nguyen XP, Duong XQ, Huynh TT. 2021a. Sorbents-based devices for the removal of spilled oil from water: A review. Environ. Sci. Pollut. Res.
  37. Hoang AT, Nguyen XP, Le AT, Pham MT, Hoang TH, Al-Tawaha ARMS, Yondri S. 2021b. Power generation characteristics of a thermoelectric modules-based power generator assisted by fishbone-shaped fins: Part II-Effects of cooling water parameters. Energy Sources, Part A Recover. Util. Environ. Eff. 43(3):381-93
  38. Hoang AT, Nižetić S, Duong XQ, Rowinski L, Nguyen XP. 2021c. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere. 130274.
  39. Hoang AT, Pham VV. 2019. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources, Part A Recover. Util. Environ. Eff. 41(5):611-25,
  40. Hoang AT, Pham VV, Nguyen XP. 2021d. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 305(10 July 2021):127161.,
  41. Hoang TH, Hoang AT, Vladimirovich VS. 2021e. Power generation characteristics of a thermoelectric modules-based power generator assisted by fishbone-shaped fins: Part I - effects of hot inlet gas parameters. Energy Sources, Part A Recover. Util. Environ. Eff. 43(5):588-99,
  42. Hosseini SE. 2019. Development of solar energy towards solar city Utopia. Energy Sources, Part A Recover. Util. Environ. Eff. 41(23):2868-81,
  43. Jani HK, Modi K V. 2019. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Sol. Energy. 179(November 2018):186-94,
  44. Johnson A, Mu L, Park YH, Valles DJ, Wang H, Xu P, Kota K, Kuravi S. 2019. A thermal model for predicting the performance of a solar still with fresnel lens. Water (Switzerland). 11(9),
  45. Kabeel AE, Abdelgaied M. 2017. Performance enhancement of modified solar still using multi-groups of two coaxial pipes in basin. Appl. Therm. Eng. 118:23-32,
  46. Kabeel AE, Abdelgaied M, Almulla N. 2016. Performances of pyramid-shaped solar still with different glass cover angles: Experimental study. IREC 2016 - 7th Int. Renew. Energy Congr.
  47. Kabeel AE, Harby K, Abdelgaied M, Eisa A. 2020. Performance of the modified tubular solar still integrated with cylindrical parabolic concentrators. Sol. Energy. 204(April):181-89,
  48. Khan MZ, Nawaz I, Tiwari GN, Meraj M. 2021. Effect of top cover cooling on the performance of hemispherical solar still. Mater. Today Proc. 38(8):384-90,
  49. Liu J, Song R, Nasreen S, Hoang AT. 2019. Analysis of the Complementary Property of Solar Energy and Thermal Power Based on Coupling Model. Nat. Environ. Pollut. Technol. 18(5):
  50. Maddah HA. 2019. Modeling and designing of a novel lab-scale passive solar still. J. Eng. Technol. Sci. 51(3):303-22,
  51. Maradiya C, Vadher J, Agarwal R. 2018. The heat transfer enhancement techniques and their Thermal Performance Factor. Beni-Suef Univ. J. Basic Appl. Sci. 7(1):1-21,
  52. Mevada D, Panchal H, Sadasivuni K kumar, Israr M, Suresh M, Dharaskar S, Thakkar H. 2020. Effect of fin configuration parameters on performance of solar still: A review. Groundw. Sustain. Dev. 10:100289
  53. Muftah AF, Alghoul MA, Fudholi A, Abdul-Majeed MM, Sopian K. 2014. Factors affecting basin type solar still productivity: A detailed review. Renew. Sustain. Energy Rev. 32:430-47,
  54. Nagarani N, Mayilsamy K, Murugesan A, Kumar GS. 2014. Review of utilization of extended surfaces in heat transfer problems. Renew. Sustain. Energy Rev. 29:604-13,
  55. Nguyen BT. 2018. Factors Affecting the Yield of Solar Distillation Systems and Measures to Improve Productivities. Desalin. Water Treat.,
  56. Omara ZM, Abdullah AS, Kabeel AE, Essa FA. 2017a. The cooling techniques of the solar stills' glass covers - A review. Renew. Sustain. Energy Rev. 78(April):176-93,
  57. Omara ZM, Hamed MH, Kabeel AE. 2011. Performance of finned and corrugated absorbers solar stills under Egyptian conditions. Desalination. 277(1-3):281-87,
  58. Omara ZM, Kabeel AE, Abdullah AS. 2017b. A review of solar still performance with reflectors. Renew. Sustain. Energy Rev. 68(September 2016):638-49,
  59. Omara ZM, Kabeel AE, Younes MM. 2013. Enhancing the stepped solar still performance using internal reflectors. Desalination. 314:67-72,
  60. Omara ZM, Kabeel AE, Younes MM. 2014. Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers. Manag. 78:876-81,
  61. Pal P, Dev R, Singh D, Ahsan A. 2018. Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi-wick basin type double slope solar still. Desalination. 447(September):55-73,
  62. Parikh R. 2018. Solar distillation system with nano particle: a review. J. Energy Manag. 3:29-34
  63. Pawar PS, Gaikwad K. 2020. Recent Trends in Solar Cells. SSRN Electronic Journal. 8(7):3302-3304.
  64. Phadatare MK, Verma SK. 2007. Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination. 217(1-3):267-75,
  65. Prakash A, Jayaprakash R. 2020. Performance evaluation of stepped multiple basin pyramid solar still. Mater. Today Proc. 45:1950-1956,
  66. Prakash A, Jayaprakash R, Kumar S. 2016. Experimental Analysis of Pyramid Wick-Type Solar Still. Int. J. Sci. Eng. Res. 7(4):1797-1804
  67. Rahbar N, Asadi A, Fotouhi-Bafghi E. 2018. Performance evaluation of two solar stills of different geometries: Tubular versus triangular: Experimental study, numerical simulation, and second law analysis. Desalination. 443(April):44-55,
  68. Ravishankar S, Nagarajan PK, Vijayakumar D, Jawahar MK. 2013. Phase change material on augmentation of fresh water production using pyramid solar still. Int. J. Renew. Energy Dev. 2(3):115-20,
  69. Saadi Z, Rahmani A, Lachtar S, Soualmi H. 2018. Performance evaluation of a new stepped solar still under the desert climatic conditions. Energy Convers. Manag. 171(June):1749-60,
  70. Sadineni SB, Hurt R, Halford CK, Boehm RF. 2008. Theory and experimental investigation of a weir-type inclined solar still. Energy. 33(1):71-80,
  71. Sarhaddi F, Farshchi Tabrizi F, Aghaei Zoori H, Mousavi SAHS. 2017. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Convers. Manag. 133:97-109,
  72. Sarkar MNI, Sifat AI, Reza SMS, Sadique MS. 2017. A review of optimum parameter values of a passive solar still and a design for southern Bangladesh. Renewables Wind. Water, Sol. 4(1):1-13,
  73. Sathyamurthy R, El-Agouz SA, Nagarajan PK, Subramani J, Arunkumar T, Mageshhabu D, Madhu B, Bharathwaaj R, Prakash N. 2017. A Review of integrating solar collectors to solar still. Renew. Sustain. Energy Rev. 77(October 2015):1069-97,
  74. Sathyamurthy R, Kennady HJ, Nagarajan PK, Ahsan A. 2014. Factors affecting the performance of triangular pyramid solar still. Desalination. 344:383-90,
  75. Sathyamurthy R, Mageshbabu D, Madhu B, Muthu Manokar A, Rajendra Prasad A, Sudhakar M. 2020. Influence of fins on the absorber plate of tubular solar still- An experimental study. Mater. Today Proc. (In Press),
  76. Selvendiran R, Manikandan D, Babu RS. 2014. Experimental and performance analysisi of single slope single corrugated basin solar still. Natl. Conf. Green Eng. Technol. Sustain. Futur. J. 45(4):141-43
  77. Sharon H, Reddy KS, Krithika D, Philip L. 2017. Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects. Desalination. 410:30-54,
  78. Sharshir SW, El-Samadony MOA, Peng G, Yang N, Essa FA, Hamed MF, Kabeel AE. 2016. Performance enhancement of wick solar still using rejected water from humidification-dehumidification unit and film cooling. Appl. Therm. Eng. 108:1268-78,
  79. Sharshir SW, Elsheikh AH, Peng G, Yang N, El-Samadony MOA, Kabeel AE. 2017. Thermal performance and exergy analysis of solar stills - A review. Renew. Sustain. Energy Rev. 73(January):521-44,
  80. Shukla A, Kant K, Sharma A. 2017. Solar still with latent heat energy storage: A review. Innov. Food Sci. Emerg. Technol. 41:34-46,
  81. Srivastava PK, Agrawal A. 2014. Economics of a high performance solar distilled water plant. Int J Res Eng Technol. 3:283-85,
  82. Tabrizi FF, Dashtban M, Moghaddam H, Razzaghi K. 2010. Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still. Desalination. 260(1-3):239-47,
  83. Taheri Mousavi SM, Egelioglu F, Ilkan M. 2020. Experimental and numerical study of the effect of various design configurations on the thermal performance of solar still desalination. Energy Sources, Part A Recover. Util. Environ. Eff. 0(0):1-15,
  84. Tanaka H. 2009. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination. 249(1):130-34,
  85. Tayeb AM. 1992. Performance study of some designs of solar stills. Energy Convers. Manag. 33(9):889-98,
  86. Tiwari GN, Sahota L. 2017. Review on the energy and economic efficiencies of passive and active solar distillation systems. Desalination. 401:151-79,
  87. Wassouf P, Peska T, Singh R, Akbarzadeh A. 2011. Novel and low cost designs of portable solar stills. Desalination. 276(1-3):294-302,
  88. Zhang J, Zhu X, Mondejar ME, Haglind F. 2019. A review of heat transfer enhancement techniques in plate heat exchangers. Renew. Sustain. Energy Rev. 101(December 2017):305-28,

Last update:

No citation recorded.

Last update:

No citation recorded.