skip to main content

Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME)

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

Published: 1 Jul 2012.
Editor(s): H. Hadiyanto

Citation Format:
Abstract
Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME), this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%). The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source) and 1gr/l (high nitrogen source) at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day). Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.
Fulltext View|Download

Article Metrics:

  1. Rupani PF, Singh RP, Ibrahim MH, Norizan E (2010) Review of Current Palm Oil Mill Effluent (POME) Treatment Methods:Vermicomposting as a Sustainable Practice. World Applied Sciences Journal 11: 70-81
  2. Deptan (2009) Rancangan Rencana Strategis Kementrian Pertanian Tahun 2010-2014. www.deptan.go.id
  3. Chisti Y (2007) Biodiesel from microalgae. Biotechnology Advances 25(3): 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Oh HM, Lee SJ, Park MH (2001) Harvesting of Chlorella vulgaris using A Bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229-34
  5. Puangbut M, Leesing R (2012) Integrated Cultivation Technique for Microbial Lipid Production by Photosynthetic Microalgae and Locally Oleaginous Yeast. World Academy of Science, Engineering and Technology 64
  6. Putri EV, Din MFM, Ahmed Z, Jamaluddin H, Chelliapan S (2011) Investigation of Microalgae for High Lipid Content using Palm Oil Mill effluent (POME) as Carbon Source.International Conference on Environment and Industrial Innovation. IPCBEE vol.12. LACSIT Press Singapore
  7. Habib MAB, Yusoff FM, Phang SM, Kamarudin MS, Mohamed S (1998) Chemical Characteristics and Essential Nutrients of Agro Industrial Effluents in Malaysia. Asian Fisheries Science 11(3): 279-286
  8. Habib MAB, Yusoff FM, Phang SM, Kamarudin MS, Mohamed S (2003) Growth and Nutritional Values of Molina micrura Fed on Chlorella vulgaris Grown in Digested Palm Oil Mill Effluent. Asian Fisheries Science 16: 107-119
  9. Edwards P, Sinchumpasak OA, Ouano EAO (1980) A Study of A Sewage Fed Highrate Stabilization Pond in Thailand. Wastewater and Resources Recovery (IDRC-15e). International Development Research Centre, Ottawa, Canada. p. 42
  10. Phalakornkule C, Mangmeemak J, Intrachod BN (2010) Pretreatment of Palm Oil Mill Effluent by Electrocoagulation and Coagulation. ScienceAsia 36: 142-149. https://doi.org/10.2306/scienceasia1513-1874.2010.36.142
  11. El-Sayed AB, Abdel-Maguid AA, Hoballah EM (2011) Growth Response of Chlorella vulgaris to Acetate Carbon and Nitrogen Forms. Nature and Science 9: http://www.sciencepub.net
  12. Choochote W, Paiboonsin K, Ruangpan, S, Pharuang, A (2010) Effects of Urea and Light Intensity on the Growth of Chlorella sp. The 8th International Symposium on Biocontrol and Biotechnology. http://www.science.kmitl.ac.th/downloads/proceeding_2/22%20page127-134.pdf
  13. Mandalam RK, Palsson BO (1998) Elemental Balancing of Biomass and Medium Composition Enhances Growth Capacity in High-Density Chlorella vulgaris Cultures. Biotechnol. Bioeng. 59: 605-611. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8
  14. Wijanarko A (2009) Effect of presence of Substituted Urea and also Ammonia as Nitrogen Source in Cultivated Medium on Chlorella's Lipid Content. Progress in Biomass and Bioenergy Production. ISBN 978-953-307-491-7, Intech. Ch.14
  15. Agwa OK, Ibe SN, Abu GO (2012) Economically Effective Potential of Chlorella sp. for Biomass and Lipid Production. Journal of Microbiology and Biotechnology Research 2(1): 35-45
  16. Cheirsilp B, Torpee S (2012) Enhanced Growth and Lipid Productivity of Microalgae under Mixotrophic Culture Condition: Effect of Light Intensity, Glucose Concentration and Fed-Batch Cultivation. Bio resource Technology 110: 510-516. https://doi.org/10.1016/j.biortech.2012.01.125
  17. Widjaja A, Chien CC, Ju, YH (2009) Study of Increasing Lipid Production from Fresh Water Microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers 40: 13-20. https://doi.org/10.1016/j.jtice.2008.07.007
  18. Hadiyanto, H., Widayat, W., & Kumoro, A. (2012). Potency of Microalgae as Biodiesel Source in Indonesia. International Journal Of Renewable Energy Development (IJRED), 1(1), 23-27. https://doi.org/10.14710/ijred.1.1.23-27

Last update:

No citation recorded.

Last update:

No citation recorded.