skip to main content

Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis

1Centre for Water Quality and Algae Research, Department of Zoology, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka

2Faculty of Graduate Studies, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka

Received: 1 Oct 2021; Revised: 10 Nov 2021; Accepted: 18 Nov 2021; Available online: 1 Dec 2021; Published: 1 Feb 2022.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The demand for more environmentally friendly alternative renewable fuels is growing as fossil fuel resources are depleting significantly. Consequently, bioethanol has attracted interest as a potentially viable fuel. The key steps in second-generation bioethanol production include pretreatment, saccharification, and fermentation. The present study employed simultaneous saccharification and fermentation (SSF) of cellulose through bacterial pathways to generate second-generation bioethanol utilizing corncobs and paper waste as lignocellulosic biomass. Mechanical and chemical pretreatments were applied to both biomasses. Then, two bacterial strains, Bacillus sp. and Norcadiopsis sp., hydrolysed the pretreated biomass and fermented it along with Achromobacter sp., which was isolated and characterized from a previous study. Bioethanol production followed by 72 h of biomass hydrolysis employing Bacillus sp. and Norcadiopsis sp., and then 72 h of fermentation using Achromobacter sp. Using solid phase micro extraction combined with GCMS the ethanol content was quantified. SSF of alkaline pretreated paper waste hydrolysed by Bacillus sp. following the fermentation by Achromobacter sp. showed the maximum ethanol percentage of 0.734±0.154. Alkaline pretreated corncobs hydrolyzed by Norcadiopsis sp. yielded the lowest ethanol percentage of 0.155±0.154. The results of the study revealed that paper waste is the preferred feedstock for generating second-generation bioethanol. To study the possible use of ethanol-diesel blends as an alternative biofuel E2, E5, E7, and E10 blend emulsions were prepared mixing commercially available diesel with ethanol. The evaluated physico-chemical characteristics of the ethanol-diesel emulsions fulfilled the Ceypetco requirements except for the flashpoint revealing that the lower ethanol-diesel blends are a promising alternative to transport fuels. As a result, the current study suggests that second generation bioethanol could be used as a renewable energy source to help alleviate the energy crisis..

Fulltext View|Download
Keywords: bacterial pathways; corncobs; ethanol-diesel blends; paper waste; SSF

Article Metrics:

  1. Aditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H. and Sebayang, A.H. (2016). Second generation bioethanol production: A critical review. Renewable and sustainable energy reviews, 66, 631-653; doi: 10.1016/j.rser.2016.07.015
  2. Al-Esawi, N., Al Qubeissi, M. and Kolodnytska, R. (2019). The impact of biodiesel fuel on ethanol/diesel blends. Energies, 12(9), 1804; doi: 10.3390/en12091804
  3. Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C. and Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141; doi: 10.3389/fenrg.2018.00141
  4. Bai, F.W., Anderson, W.A. and Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology advances, 26(1), 89-105; doi: 10.1016/j.biotechadv.2007.09.002
  5. BP Statistical Review of World Energy (2020). 69th edition, 1-68
  6. Braide, W., Kanu, I.A., Oranusi, U.S. and Adeleye, S.A. (2016). Production of bioethanol from agricultural waste. Journal of fundamental and Applied Sciences, 8(2), 372-386; doi: 10.4314/jfas.v8i2.14
  7. Branco, R.H., Serafim, L.S. and Xavier, A.M. (2019). Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock. Fermentation, 5(1), 4; doi: 10.3390/fermentation5010004
  8. Chandel, A.K., Chan, E.S., Rudravaram, R., Narasu, M.L., Rao, L.V. and Ravindra, P. (2013). Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnology and molecular biology review, 2(1), 14-32; doi: 10.5897/BMBR2007.0002
  9. Chen, M., Xia, L. and Xue, P. (2007). Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration & Biodegradation, 59(2), 85-89; doi: 10.1016/j.ibiod.2006.07.011
  10. Debnath, B.K., Sahoo, N. and Saha, U.K. (2013). Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine. Energy Conversion and Management, 69, 191-198; doi: 10.1016/J.ENCONMAN.2013.01.031
  11. Deshavath, N.N., Veeranki, V.D. and Goud, V.V. (2019). Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. In Sustainable Bioenergy, 1-19. Elsevier; doi: 10.1016/B978-0-12-817654-2.00001-0
  12. Dung, N.T.P. and Huynh, P.X. (2013). Screening Thermo-and Ethanol Tolerant Bacteria for Ethanol Fermentation. American Journal of Microbiological Research, 1(2), 25-31; doi: 10.12691/AJMR-1-2-3
  13. Efeovbokhan, V.E., Egwari, L., Alagbe, E.E., Adeyemi, J.T. and Taiwo, O.S. (2019). Production of bioethanol from hybrid cassava pulp and peel using microbial and acid hydrolysis. BioResources, 14(2), 2596-2609; doi: 10.15376/biores.14.2.2596-2609
  14. Farida, I., Syamsu, K., and Rahayuningsih, M. (2015). Direct Bioethanol Production from Breadfruit Starch (Artocarpus communis Forst) by Engineered Simultaneous Saccharification and Fermentation (ESSF) using Microbes Consortium. International Journal of Renewable Energy Development, 4(1), 25-31; doi: 10.14710/ijred.4.1.25-31
  15. Gao, Z., Lin, S., Ji, J. and Li, M. (2019). An experimental study on combustion performance and flame spread characteristics over liquid diesel and ethanol-diesel blended fuel. Energy, 170, 349-355; doi: 10.1016/
  16. Gupta, R., Yadav, G., Kumar, G., Yadav, A., Saini, J.K. and Kuhad, R.C. (2019). Second generation bioethanol production: the state of art. Sustainable approaches for biofuels production technologies, 121-146; doi: 10.1007/978-3-319-94797-6_8
  17. Hagos, F.Y., Ali, O.M., Mamat, R. and Abdullah, A.A. (2017). Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine. Renewable and Sustainable Energy Reviews, 75, 1281-1294; doi: 10.1016/j.rser.2016.11.113
  18. Hajba, L., Eller, Z., Nagy, E. and Hancsok, J. (2011). Properties of diesel-alcohol blends. Hungarian Journal of Industry and Chemistry, 39(3), 349-352; doi: 10.1515/446
  19. Halder, P., Azad, K., Shah, S. and Sarker, E. (2019). Prospects and technological advancement of cellulosic bioethanol eco-fuel production. In Advances in eco-fuels for a sustainable environment, 211-236; doi: 10.1016/B978-0-08-102728-8.00008-5
  20. Hansen, A.C., Zhang, Q. and Lyne, P.W. (2005). Ethanol–diesel fuel blends––a review. Bioresource technology, 96(3), 277-285; doi: 10.1016/j.biortech.2004.04.007
  21. Immanuel, G., Dhanusha, R., Prema, P. and Palavesam, A. (2006). Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International Journal of Environmental Science & Technology, vol.3. no.1, .25-34;
  22. Jayasekara, S.K., Abayasekara, C.L. and Ratnayake, R.R. (2019). Efficient Microorganisms for Bioethanol Production from the Natural Environment of Sri Lanka. In Proceedings of International Research Symposium of Uva Wellassa University; doi: 10.13140/RG.2.2.13363.25120
  23. Jayathilaka, M.G.L.W., Henagamage, A.P., Peries, C.M. and Seneviratne, G. (2018). Enhancement of Cellulolytic Activity through Biofilm Action for Bioethanol Production. In Proceedings of International Research Symposium of Uva Wellassa University
  24. Kahar, P., Taku, K. and Tanaka, S. (2010). Enzymatic digestion of corncobs pretreated with low strength of sulfuric acid for bioethanol production. Journal of bioscience and bioengineering, 110(4), 453-458; doi: 10.1016/j.jbiosc.2010.05.002
  25. Kularathne, I.W., Rathneweera, A.C., Kalpage, C.S., Rajapakshe,S. and Gunathilaka, C.A., (2020). Optimization and kinetic parameter estimation of bioethanol production from freely available Sri Lankan fruits in batch fermentation. Ceylon Journal of Science, 49(3), 283-291; doi: 10.4038/cjs.v49i3.7779
  26. Kumari, D. and Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, 90, 877-891; doi: 10.1016/j.rser.2018.03.111
  27. Kuszewski, H., Jaworski, A. and Ustrzycki, A. (2017). Lubricity of ethanol–diesel blends–Study with the HFRR method. Fuel, 208, 491-498; doi: 10.1016/j.fuel.2017.07.046
  28. Lapuerta, M., Armas, O. and Garcia-Contreras, R. (2007). Stability of diesel–bioethanol blends for use in diesel engines. Fuel, 86(10-11), 1351-1357; doi: 10.1016/j.fuel.2006.11.042
  29. Lizunkov, V. (2018). Population of the world and regions as the principal energy consumer. International Journal of Energy Economics and Policy, 2018, 8(3), 250-257
  30. Loow, Y.L., Wu, T.Y., Jahim, J.M., Mohammad, A.W. and Teoh, W.H. (2016). Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23(3), 1491-1520; doi: 10.1007/s10570-016-0936-8
  31. Madusanka, D.A.T. and Manage, P.M. (2018). Potential utilization of Microcystis Sp. for biodiesel production; Green Solution for Future Energy Crisis. Asian Journal of Microbiology Biotech. Enironmental. Science, 20(2), 506-512
  32. Mafa, M., Malgas, S., Bhattacharya, A., Rashamuse, K. and Pletschke, B.I. (2020). The effects of alkaline pretreatment on agricultural biomasses (corn cob and sweet sorghum bagasse) and their hydrolysis by a termite-derived enzyme cocktail. Agronomy, 10(8), 1211; doi: 10.3390/agronomy10081211
  33. Mat Aron, N.S., Khoo, K.S., Chew, K.W., Show, P.L., Chen, W.H. and Nguyen, T.H.P. (2020). Sustainability of the four generations of biofuels–A review. International Journal of Energy Research, 44(12), 9266-9282; doi: 10.1002/er.5557
  34. Muley, P. and Boldor, D. (2017). Advances in biomass pretreatment and cellulosic bioethanol production using microwave heating. Proceedings of SEEP. 27-30; doi: 10.18690/978-961-286-048-6.18
  35. Nair, R.B., Lennartsson, P.R. and Taherzadeh, M.J. (2017). Bioethanol production from agricultural and municipal wastes. In Current developments in biotechnology and bioengineering, 157-190; doi: 10.1016/B978-0-444-63664-5.00008-3
  36. Odziemkowska, M., Matuszewska, A. and Czarnocka, J. (2016). Diesel oil with bioethanol as a fuel for compression-ignition engines. Applied Energy, 184, 1264-1272; doi: 10.1016/j.apenergy.2016.07.069
  37. Ojewumi, M.E., Obielue, B.I., Emetere, M.E., Awolu, O.O. and Ojewumi, E.O. (2018). Alkaline pre-treatment and enzymatic hydrolysis of waste papers to fermentable sugar. Journal of Ecological Engineering, 19(1), 211-217; doi: 10.12911/22998993/79404
  38. Onuki, S., Koziel, J.A., Jenks, W.S., Cai, L., Rice, S. and van Leeuwen, J. (2016). Optimization of extraction parameters for quantification of fermentation volatile by‐products in industrial ethanol with solid‐phase microextraction and gas chromatography. Journal of the Institute of Brewing, 122(1), 102-109; doi: 10.1002/jib.297
  39. Parthasarathi, R., Gowri, S. and Saravanan, C.G. (2014). Effects of ethanol-diesel emulsions on the performance, combustion and emission characteristics of DI diesel engine. American Journal of Applied Sciences, 11(4), 592; doi: 10.3844/ajassp.2014.592.600
  40. Pereira, R.G. and Rangel, I.R. (2020). An investigation of the performance of an ignition compression engine using ethanol-butanol-diesel mixtures. International Journal of Oil, Gas and Coal Technology, 25(2), 184-201; doi: 10.1504/IJOGCT.2020.109443
  41. Prasad, R.K., Chatterjee, S., Mazumder, P.B., Gupta, S.K., Sharma, S., Vairale, M.G., Datta, S., Dwivedi, S.K. and Gupta, D.K. (2019). Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere, 231, 588-606; doi: 10.1016/j.chemosphere.2019.05.142
  42. Rastogi, M. and Shrivastava, S. (2017). Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 80, 330-340; doi: 10.1016/j.rser.2017.05.225
  43. Raud, M., Kikas, T., Sippula, O. and Shurpali, N.J. (2019). Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111, 44-56; doi: 10.1016/j.rser.2019.05.020
  44. Restiawaty, E., Gani, K.P., Dewi, A., Arina, L.A., Kurniawati, K.I., Budhi, Y.W., and Akhmaloka (2020). Bioethanol Production from Sugarcane Bagasse using Neurospora intermedia in an Airlift Bioreactor. International Journal of Renewable Energy Development, 9(2), 247-253; doi: 10.14710/ijred.9.2.247-253
  45. Senarathna, D.B.G.M., Rupasinghe, C.P. and Bandara, W.B.M.A.C. (2019). Bioethanol Production from Lignocellulosic Materials. In Proceedings of EdHat International Research Conference on Technology and Innovation (IRCTECiN)
  46. Sewsynker-Sukai, Y. and Kana, E.G. (2018). Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies. Bioresource technology, 262, 32-41; doi: 10.1016/j.biortech.2018.04.056
  47. Sharma, B., Larroche, C. and Dussap, C.G. (2020). Comprehensive assessment of 2G bioethanol production. Bioresource technology, 313, 123-630; doi: 10.1016/j.biortech.2020.123630
  48. Sharma, N. and Sharma, N. (2018). Second generation bioethanol production from lignocellulosic waste and its future perspectives: A review. International Journal of Current Microbiology Applied Science, 7(5), 1285-1290; doi: 10.20546/ijcmas.2018.705.155
  49. Singh, D.P., and Trivedi, R.K. (2013). Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research, 5(2), 727-734
  50. Sitompul, P. J., Widayat, W., & Soerawidjaja, H. T. (2012). Evaluation and Modification of Processes for Bioethanol Separation and Production. International Journal of Renewable Energy Development, 1(1), 15-22; doi: 10.14710/ijred.1.1.15-22
  51. Singhvi, M.S. and Gokhale, D.V. (2019). Lignocellulosic biomass: hurdles and challenges in its valorization. Applied microbiology and biotechnology, 103(23), 9305-9320; doi: 10.1007/s00253-019-10212-7
  52. Su, T., Zhao, D., Khodadadi, M. and Len, C. (2020). Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 24, 56-60; doi: 10.1016/j.cogsc.2020.04.005
  53. Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016). Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. International Journal of Renewable Energy Development, 5(2), 113-118; doi: 10.14710/ijred.5.2.113-118
  54. Sun, S., Sun, S., Cao, X. and Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource technology, 199, 49-58; doi: 10.1016/j.biortech.2015.08.061
  55. Tsegaye, B., Balomajumder, C. and Roy, P. (2019). Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bulletin of the National Research Centre, 43(1), 1-16; doi: 10.1186/s42269-019-0094-x
  56. Wan, H.P., Hung, W.C., Lin, U.T., Chen, J.Y., Yu, P.J. and Yang, T.Y. (2018). Hydrolysis of lignocellulosic biomass in ionic solution. Journal of Chemical Engineering of Japan, 51(9); doi: 786-79310.1252/jcej.17we151
  57. Wang, X. (2021). Pretreatment: Toward effectiveness and sustainability. In Advances in 2nd Generation of Bioethanol Production, Woodhead Publishing, 87-112; doi: 10.1016/B978-0-12-818862-0.00011-X
  58. Weerasinghe, W. M. L. I., Madusanka, D. A. T., and Manage, P. M. (2021). Isolation and Identification of Cellulase Producing and Sugar Fermenting Bacteria for Second-Generation Bioethanol Production. International Journal of Renewable Energy Development, 10(4), 699-711; doi: 10.14710/ijred.2021.35527
  59. Winarsih, S. and Siskawardani, D.D. (2020). Hydrolysis of corncobs using a mixture of crude enzymes from Trichoderma reesei and Aspergillus niger for bioethanol production. Energy Reports, 6, 256-262; doi: 10.1016/j.egyr.2020.11.141
  60. Wipulasena, A. (14 October, 2018). Country generates 7,500MT waste daily: Strategic solutions key to fixing garbage crisis. Sunday Observer. Retrieved from
  61. Woiciechowski, A.L., Neto, C.J.D., de Souza Vandenberghe, L.P., de Carvalho Neto, D.P., Sydney, A.C.N., Letti, L.A.J., Karp, S.G., Torres, L.A.Z. and Soccol, C.R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance–Conventional processing and recent advances. Bioresource technology, 304, 122848; doi: 10.1016/j.biortech.2020.122848
  62. Yang, L., Ru, Y., Xu, S., Liu, T. and Tan, L. (2021). Features correlated to improved enzymatic digestibility of corn stover subjected to alkaline hydrogen peroxide pretreatment. Bioresource Technology, 325, 124-688; doi: 10.1016/j.biortech.2021.124688
  63. Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N. and Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475-501; doi: 10.1016/j.rser.2016.12.076
  64. Zentou, H., Abidin, Z.Z., Yunus, R., Awang Biak, D.R. and Korelskiy, D. (2019). Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes, 7(7), 458; doi: 10.3390/pr7070458
  65. Zhang, M., Wang, F., Su, R., Qi, W. and He, Z. (2010). Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 101(13), 4959-4964; doi: 10.1016/j.biortech.2009.11.010
  66. Zoghlami, A. and Paës, G. (2019). Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Frontiers in chemistry, 7, 874; doi: 10.3389/fchem.2019.00874

Last update:

  1. The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine

    Abdul Manan Khan, Ghulam Hassan Askari, Zaheer Ahmed, M. Asif. MATEC Web of Conferences, 381 , 2023. doi: 10.1051/matecconf/202338101012
  2. Microbiology-2.0 Update for a Sustainable Future

    Amit Kumar, Akarsh Verma. 2024. doi: 10.1007/978-981-99-9617-9_15
  3. Two-step pH regulating ethanol production through continuous CO/CO2 gas fermentation by mixed bacteria from rabbit faeces

    Xiangjun Guo, Yun Huang, Yunheng Tang, Ao Xia, Xianqing Zhu, Xun Zhu, Qiang Liao. Renewable Energy, 228 , 2024. doi: 10.1016/j.renene.2024.120564
  4. Positional isomeric effect of nitro group substituted indoles on the electropolymerization and the capacitance performances of their polymers

    Xiumei Ma, Zhengyou Zhu, Baoyang Lu, Jingkun Xu, Weiqiang Zhou. Journal of Applied Polymer Science, 140 (42), 2023. doi: 10.1002/app.54540
  5. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR)

    Fatima Ezzahra Yatim, Imane Boumanchar, Bousalham Srhir, Younes Chhiti, Charafeddine Jama, Fatima Ezzahrae M'hamdi Alaoui. Waste Management, 153 , 2022. doi: 10.1016/j.wasman.2022.09.013
  6. Introducing Oxygen Vacancies and Ti3+ on Rh/TiO2 via Plasma Treatment for CO Hydrogenation to Ethanol

    Zhenyu Wang, Shoushuai Tian, Junxin Guo, Zhao Wang. Energy & Fuels, 37 (1), 2023. doi: 10.1021/acs.energyfuels.2c03018
  7. Techno-economic analysis of biodiesel and bioethanol production from Chlorella sp. algae biomass

    Samuel Pangeran Aletheia, Ahmad Syauqi, Kelvin, Kuntum Khaira, Muhammad Miftah Rafi, D. Dwi Anggoro, A.C. Kumoro, D. Dahnum, W.K. Restu, K.C. Sembiring, Indriyati, S.T.C.L. Ndruru, A.M.H. Putri. E3S Web of Conferences, 503 , 2024. doi: 10.1051/e3sconf/202450302004
  8. Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier

    Thanh Xuan Nguyen-Thi, Thi Minh Tu Bui, Van Ga Bui. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.53994
  9. Probe-based spectrophotometric quantification of petrol-ethanol fuel blends for field-able applications

    Anupama Vijayan, John Prakash. Green Analytical Chemistry, 3 , 2022. doi: 10.1016/j.greeac.2022.100043
  10. A Review on Metal–Organic Framework as a Promising Catalyst for Biodiesel Production

    Van Giao Nguyen, Prabhakar Sharma, Marek Dzida, Van Hung Bui, Huu Son Le, Ahmed Shabana El-Shafay, Huu Cuong Le, Duc Trong Nguyen Le, Viet Dung Tran. Energy & Fuels, 38 (4), 2024. doi: 10.1021/acs.energyfuels.3c04203
  11. Dissociation characteristics and anthropogenic emissions from the combustion of double gas hydrates

    D.V. Antonov, I.G. Donskoy, O.S. Gaidukova, S.Ya. Misyura, V.S. Morozov, G.S. Nyashina, P.A. Strizhak. Environmental Research, 214 , 2022. doi: 10.1016/j.envres.2022.113990

Last update: 2024-05-25 04:10:11

No citation recorded.