skip to main content

An Improvement of Catalytic Converter Activity Using Copper Coated Activated Carbon Derived from Banana Peel

1Department of Heavy Equipment Mechanical Engineering, Politeknik Negeri Madura, Indonesia

2Department of Chemistry, Institut Teknologi Sepuluh Nopember, Indonesia

3Department of Ship Building Engineering, Politeknik Negeri Madura, Indonesia

Received: 5 Sep 2022; Revised: 26 Oct 2022; Accepted: 8 Nov 2022; Available online: 15 Nov 2022; Published: 1 Jan 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The emission of nitrogen oxide (NOx), nitrogen monoxide (NO) and carbon monoxide (CO) from vehicle exhaust gas generates an adverse effect to the environment as well as the human health. Therefore, the need to reduce such emission is urgent. The decrease of the emission can be achieved through the use of catalytic converter. This study explains the application of catalytic converter prepared from activated carbon to enhance the activity through its adsorption ability. The activated carbon was derived from banana peels after heating them up at 400 ºC for 1.5 hours and activation using natrium hydroxide (NaOH). Several techniques including N2 adsorption-desorption, X-Ray Diffraction (XRD), Scanning Electron Microscopy-Electron Dispersive X-ray (SEM-EDX), and Fourier Transform Infrared (FTIR) were adopted to characterize the activated carbon properties. The activated carbon formed was then coated with copper. The activity of the catalytic converter using activated carbon coated with copper was then tested for its performance on diesel engine Yanmar TF 70 LY-DI with variations in the number of catalyst layers, namely 1 layer (C1), 2 layers (C2) and 3 layers (C3). Sample with three layers (C3) of catalyst exhibited the highest activity with the percentage efficiency in reducing emissions concentration of 48.76 %; 31.27 % and 29.35 % for NOx, NO and CO, respectively.
Fulltext View|Download
Keywords: Catalytic converter; emission; copper; activated carbon; banana peel

Article Metrics:

  1. Abdi, K., Ezoddin, M., & Pirooznia, N. (2020). Temperature-controlled liquid–liquid microextraction using a biocompatible hydrophobic deep eutectic solvent for microextraction of palladium from catalytic converter and road dust samples prior to ETAAS determination. Microchemical Journal, 157(May), 104999. https://doi.org/10.1016/j.microc.2020.104999
  2. Abed, K. A., El Morsi, A. K., Sayed, M. M., Shaib, A. A. E., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985–989. https://doi.org/10.1016/j.ejpe.2018.02.008
  3. Adegboyega, S. O., Olusegun, A. A., Michael, S. O., Mku, T. I., & Sam, S. A. (2015). Preparation of phosphoric acid activated carbons from Canarium Schweinfurthii Nutshell and its role in methylene blue adsorption. Journal of Chemical Engineering and Materials Science, 6(2), 9–14. https://doi.org/10.5897/jcems2015.0219
  4. Arunkumar, S., Kankeyan, M., Muneeswaran, V., & Aravind, M. R. (2016). Exhaust Emission Reduction in SI Engine Using Catalytic Converter With Silicon Dioxide & Alumina With Silica as Catalysts. 2, 72–78
  5. Bader, N., Sager, U., Schneiderwind, U., & Ouederni, A. (2019). Foam and granular olive stone-derived activated carbons for NO2 filtration from indoor air. Journal of Environmental Chemical Engineering, 7(2), 103005. https://doi.org/10.1016/j.jece.2019.103005
  6. Bagus Irawan, R., Purwanto, P., & Hadiyanto, H. (2015). Optimum Design of Manganese-coated Copper Catalytic Converter to Reduce Carbon Monoxide Emissions on Gasoline Motor. Procedia Environmental Sciences, 23(Ictcred 2014), 86–92. https://doi.org/10.1016/j.proenv.2015.01.013
  7. Black, R., Equilibrium, D., Studies, K., Mook, W. T., Aroua, K., & Szlachta, M. (2016). Palm Shell-based Activated Carbon for Removing. 11(1), 1432–1447
  8. Borhan, A., Thangamuthu, S., Taha, M. F., & Ramdan, A. N. (2015). Development of activated carbon derived from banana peel for CO2 removal. AIP Conference Proceedings, 1674. https://doi.org/10.1063/1.4928819
  9. Carraro, P. S., Spessato, L., Crespo, L. H. S., Yokoyama, J. T. C., Fonseca, J. M., Bedin, K. C., Ronix, A., Cazetta, A. L., Silva, T. L., & Almeida, V. C. (2019). Activated carbon fibers prepared from cellulose and polyester–derived residues and their application on removal of Pb2+ ions from aqueous solution. Journal of Molecular Liquids, 289, 111150. https://doi.org/10.1016/j.molliq.2019.111150
  10. Chowdhury, Z. Z., Zain, S. M., Khan, R. A., Rafique, R. F., & Khalid, K. (2012). Batch and fixed bed adsorption studies of lead (ii) cations from aqueous solutions onto granular activated carbon derived from mangostana garcinia shell. BioResources, 7(3), 2895–2915
  11. Dada, A. O., Inyinbor, A. A., Tokula, B. E., Bello, O. S., & Pal, U. (2022). Preparation and characterization of rice husk activated carbon-supported zinc oxide nanocomposite (RHAC-ZnO-NC). Heliyon, 8(8), e10167. https://doi.org/10.1016/j.heliyon.2022.e10167
  12. Daouda, M. M. A., Akowanou, A. V. O., Mahunon, S. E. R., Adjinda, C. K., Aina, M. P., & Drogui, P. (2021). Optimal removal of diclofenac and amoxicillin by activated carbon prepared from coconut shell through response surface methodology. South African Journal of Chemical Engineering, 38(July), 78–89. https://doi.org/10.1016/j.sajce.2021.08.004
  13. Dey, S., & Chandra Dhal, G. (2020). Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter. Materials Today Chemistry, 17, 100282. https://doi.org/10.1016/j.mtchem.2020.100282
  14. Dey, Subhashish, & Dhal, G. C. (2019). Materials progress in the control of CO and CO2 emission at ambient conditions: An overview. Materials Science for Energy Technologies, 2(3), 607–623. https://doi.org/10.1016/j.mset.2019.06.004
  15. Durán, I., Rubiera, F., & Pevida, C. (2022). Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures. Chemical Engineering Journal, 428. https://doi.org/10.1016/j.cej.2021.132564
  16. Fedotov, A. S., Antonov, D. O., Bukhtenko, O. V., Uvarov, V. I., Kriventsov, V. V., & Tsodikov, M. V. (2017). The role of aluminum in the formation of Ni–Al–Co-containing porous ceramic converters with high activity in dry and steam reforming of methane and ethanol. International Journal of Hydrogen Energy, 42(38), 24131–24141. https://doi.org/10.1016/j.ijhydene.2017.07.095
  17. Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y., Wan Mahari, W. A., Lee, X. Y., Han, C. S., Vo, D. V. N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., & Lam, S. S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389(February), 124401. https://doi.org/10.1016/j.cej.2020.124401
  18. Frazier, R. S., Jin, E., & Kumar, A. (2015). Life cycle assessment of biochar versus metal catalysts used in syngas cleaning. Energies, 8(1), 621–644. https://doi.org/10.3390/en8010621
  19. Freitas, J. V., Nogueira, F. G. E., & Farinas, C. S. (2019). Coconut shell activated carbon as an alternative adsorbent of inhibitors from lignocellulosic biomass pretreatment. Industrial Crops and Products, 137(May), 16–23. https://doi.org/10.1016/j.indcrop.2019.05.018
  20. Fuentes-Cano, D., Gómez-Barea, A., Nilsson, S., & Ollero, P. (2013). Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chemical Engineering Journal, 228, 1223–1233. https://doi.org/10.1016/j.cej.2013.03.130
  21. Ganesan, S., Mohanraj, M., Guruprakaash, R., & Logeshwar, S. (2021). Impact of bamboo and castor composite catalytic converter on VCR diesel engine emission using Wheat germ oil. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.03.680
  22. Geng, Z., Wang, D., Zhang, C., Zhou, X., Xin, H., Liu, X., & Cai, M. (2014). Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure. International Journal of Hydrogen Energy, 39(25), 13643–13649. https://doi.org/10.1016/j.ijhydene.2014.02.065
  23. Ghofur, A., Soemarno, Hadi, A., & Putra, M. D. (2018). Potential fly ash waste as catalytic converter for reduction of HC and CO emissions. Sustainable Environment Research, 28(6), 357–362. https://doi.org/10.1016/j.serj.2018.07.003
  24. Hamid, A., & Wilujeng, A. D. (2021). The Reduction of CO and SO 2 by Natural Zeolites in Catalytic Converter of Diesel Engine. 208(Icist 2020), 162–167
  25. Hammani, H., Laghrib, F., Farahi, A., Lahrich, S., El Ouafy, T., Aboulkas, A., El Harfi, K., & El Mhammedi, M. A. (2019). Preparation of activated carbon from date stones as a catalyst to the reactivity of hydroquinone: Application in skin whitening cosmetics samples. Journal of Science: Advanced Materials and Devices, 4(3), 451–458. https://doi.org/10.1016/j.jsamd.2019.07.003
  26. Huang, Y., Li, S., Chen, J., Zhang, X., & Chen, Y. (2014). Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H 3 PO 4 activation: Adsorption capacity, kinetic and isotherm studies. Applied Surface Science, 293, 160–168. https://doi.org/10.1016/j.apsusc.2013.12.123
  27. Ilkiliç, C. (2009). Emission characteristics of a diesel engine fueled by 25% sunflower oil methyl ester and 75% diesel fuel blend. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 31(6), 480–491. https://doi.org/10.1080/15567030701531329
  28. Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789–805. https://doi.org/10.1016/j.cej.2015.08.014
  29. Jeyakumar, N., Arumugam, C. A. K., Narayanasamy, B., & Rajkumar, R. (2020). Effect of wash coat layers on the conversion efficiency of a catalytic converter in the SI engine. International Journal of Ambient Energy, 0(0), 1–27. https://doi.org/10.1080/01430750.2020.1712256
  30. Jothi Ramalingam, R., Sivachidambaram, M., Vijaya, J. J., Al-Lohedan, H. A., & Muthumareeswaran, M. R. (2020). Synthesis of porous activated carbon powder formation from fruit peel and cow dung waste for modified electrode fabrication and application. Biomass and Bioenergy, 142(October), 105800. https://doi.org/10.1016/j.biombioe.2020.105800
  31. Kataria, J., Mohapatra, S. K., & Kundu, K. (2019). Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine. Journal of the Energy Institute, 92(2), 275–287. https://doi.org/10.1016/j.joei.2018.01.008
  32. Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P., & Humaidi, S. (2021). Data on characterization, model, and adsorption rate of banana peel activated carbon (Musa Acuminata) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe). Data in Brief, 39, 107611. https://doi.org/10.1016/j.dib.2021.107611
  33. Klinghoffer, N. B., Castaldi, M. J., Nzihou, A., Klinghoffer, N. B., Castaldi, M. J., Nzihou, A., Properties, C., Perfor-, C., Klingho, N. B., Castaldi, M. J., & Nzihou, A. (2012). Catalyst Properties and Catalytic Performance of Char from Biomass Gasification. Industrial and Engineering Chemistry Research, 51(40), 13113–13122
  34. Kora, A. J., Madhavi, K., Meeravali, N. N., & Jai Kumar, S. (2019). In situ synthesis and preconcentration of cetylpyridinium complexed hexaiodo platinum nanoparticles from spent automobile catalytic converter leachate using cloud point extraction. Arabian Journal of Chemistry, 13(3), 4594–4605. https://doi.org/10.1016/j.arabjc.2019.10.008
  35. Kosheleva, R. I., Mitropoulos, A. C., & Kyzas, G. Z. (2019). Synthesis of activated carbon from food waste. Environmental Chemistry Letters, 17(1), 429–438. https://doi.org/10.1007/s10311-018-0817-5
  36. Li, X., Wang, Y., Zhang, G., Sun, W., Bai, Y., Zheng, L., Han, X., & Wu, L. (2019). Influence of Mg-promoted Ni-based Catalyst Supported on Coconut Shell Carbon for CO2 Methanation. ChemistrySelect, 4(3), 838–845. https://doi.org/10.1002/slct.201803369
  37. Lu, Y., & Li, S. (2019). Preparation of Hierarchically Interconnected Porous Banana Peel Activated Carbon for Methylene Blue Adsorption. Journal Wuhan University of Technology, Materials Science Edition, 34(2), 472–480. https://doi.org/10.1007/s11595-019-2076-0
  38. Manojkumar, R., Haranethra, S., Muralidharan, M., & Ramaprabhu, A. (2021). I.C. Engine emission reduction using catalytic converter by replacing the noble catalyst and using copper oxide as the catalyst. Materials Today: Proceedings, 45(xxxx), 769–773. https://doi.org/10.1016/j.matpr.2020.02.804
  39. Méndez, A., Álvarez, M. L., Fidalgo, J. M., Di Stasi, C., Manyà, J. J., & Gascó, G. (2022a). Biomass-derived activated carbon as catalyst in the leaching of metals from a copper sulfide concentrate. Minerals Engineering, 183(April), 107594. https://doi.org/10.1016/j.mineng.2022.107594
  40. Méndez, A., Álvarez, M. L., Fidalgo, J. M., Di Stasi, C., Manyà, J. J., & Gascó, G. (2022b). Biomass-derived activated carbon as catalyst in the leaching of metals from a copper sulfide concentrate. Minerals Engineering, 183(October 2021). https://doi.org/10.1016/j.mineng.2022.107594
  41. Naveenkumar, R., Ramesh Kumar, S., Pushyanthkumar, G., & Senthil Kumaran, S. (2020). NOx, CO & HC control by adopting activated charcoal enriched filter in catalytic converter of diesel engine. Materials Today: Proceedings, 22, 2283–2290. https://doi.org/10.1016/j.matpr.2020.03.349
  42. Neme, I., Gonfa, G., & Masi, C. (2022). Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4. Results in Materials, 15(June), 100304. https://doi.org/10.1016/j.rinma.2022.100304
  43. Neolaka, Y. A. B., Lawa, Y., Naat, J., Riwu, A. A. P., Darmokoesoemo, H., Widyaningrum, B. A., Iqbal, M., & Kusuma, H. S. (2021). Indonesian Kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb(II) adsorption from aqueous solution. Environmental Technology and Innovation, 24, 101997. https://doi.org/10.1016/j.eti.2021.101997
  44. Nguyen, D. T. C., Nguyen, T. T., Le, H. T. N., Nguyen, T. T. T., Bach, L. G., Nguyen, T. D., Vo, D. V. N., & Van Tran, T. (2021). The sunflower plant family for bioenergy, environmental remediation, nanotechnology, medicine, food and agriculture: a review. Environmental Chemistry Letters, 19(5), 3701–3726. https://doi.org/10.1007/s10311-021-01266-z
  45. Nikić, J., Tubić, A., Watson, M., Maletić, S., Šolić, M., Majkić, T., & Agbaba, J. (2019). Arsenic removal from water by green synthesized magnetic nanoparticles. Water (Switzerland), 11(12). https://doi.org/10.3390/w11122520
  46. Nofendri, Y. (2019). Pengaruh Penambahan Oksigenat Pada Solar Terhadap Emisi Gas Buang Mesin Diesel. Jurnal Kajian Teknik Mesin, 3(1), 30–39. https://doi.org/10.52447/jktm.v3i1.1592
  47. Nugraha, R. E., Prasetyoko, D., Asikin-Mijan, N., Bahruji, H., Suprapto, S., Taufiq-Yap, Y. H., & Jalil, A. A. (2021). The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts. Microporous and Mesoporous Materials, 315(October 2020), 110917. https://doi.org/10.1016/j.micromeso.2021.110917
  48. Oyim, J., Amuhaya, E., Matshitse, R., Mack, J., & Nyokong, T. (2022). Integrated photocatalyst adsorbents based on porphyrin anchored to activated carbon granules for water treatment. Carbon Trends, 8, 100191. https://doi.org/10.1016/j.cartre.2022.100191
  49. Presin Kumar, J., Sivakumar, S., Balaji, R., Sathish, S., & Nadarajan, M. (2019). Effective Utilization of Banana Plant Waste Materials for Catalytic Converter Filter in Kirloskar Diesel Engine. Materials Today: Proceedings, 24, 2174–2184. https://doi.org/10.1016/j.matpr.2020.03.675
  50. Pullas Navarrete, J., & de la Torre, E. (2022). Preparation of Activated Carbon Fibers (Acf) Impregnated with Silver Microparticles from Cotton-Woven Wastes and its Performance as an Antibacterial Agent. SSRN Electronic Journal, 33(May), 104598. https://doi.org/10.2139/ssrn.4132020
  51. Rajakrishnamoorthy, P., Karthikeyan, D., & Saravanan, C. G. (2020). Emission reduction technique applied in SI engines exhaust by using zsm5 zeolite as catalysts synthesized from coal fly ash. Materials Today: Proceedings, 22, 499–506. https://doi.org/10.1016/j.matpr.2019.08.097
  52. Ramesh, A., Jeyavelan, M., Rajju Balan, J. A. A., Srivastava, O. N., & Leo Hudson, M. S. (2021). Supercapacitor and room temperature H, CO2 and CH4 gas storage characteristics of commercial nanoporous activated carbon. Journal of Physics and Chemistry of Solids, 152(September 2020), 109969. https://doi.org/10.1016/j.jpcs.2021.109969
  53. Ratan, J. K., Kaur, M., & Adiraju, B. (2018). Synthesis of activated carbon from agricultural waste using a simple method: Characterization, parametric and isotherms study. Materials Today: Proceedings, 5(2), 3334–3345. https://doi.org/10.1016/j.matpr.2017.11.576
  54. Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. Journal of Energy Storage, 20(July), 418–426. https://doi.org/10.1016/j.est.2018.10.009
  55. Rodríguez-Sánchez, S., Díaz, P., Ruiz, B., González, S., Díaz-Somoano, M., & Fuente, E. (2022). Food industrial biowaste-based magnetic activated carbons as sustainable adsorbents for anthropogenic mercury emissions. Journal of Environmental Management, 312(February). https://doi.org/10.1016/j.jenvman.2022.114897
  56. Saleh, T. A. (2018). Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. Journal of Cleaner Production, 172, 2123–2132. https://doi.org/10.1016/j.jclepro.2017.11.208
  57. Sethia, G., & Sayari, A. (2016). Activated carbon with optimum pore size distribution for hydrogen storage. Carbon, 99, 289–294. https://doi.org/10.1016/j.carbon.2015.12.032
  58. Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., & Zhang, S. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 7(24), 14395–14405. https://doi.org/10.1039/c7ra00287d
  59. Soleimani, M., & Kaghazchi, T. (2014). Low-Cost Adsorbents from Agricultural By- Products Impregnated with Phosphoric Acid. Advanced Chemical Engineering Research, 3. www.seipub.org/acer
  60. Soliman, A. M., Alshamsi, D., Murad, A. A., Aldahan, A., Ali, I. M., Ayesh, A. I., & Elhaty, I. A. (2022). Photocatalytic removal of nitrate from water using activated carbon-loaded with bimetallic Pd-Ag nanoparticles under natural solar radiation. Journal of Photochemistry and Photobiology A: Chemistry, 433(April), 114175. https://doi.org/10.1016/j.jphotochem.2022.114175
  61. Sugavaneswaran, M., Rajesh, N., Katta, V., Sathish Kumar, G., & Prakash, R. (2019). Deep Drawing Simulation Study for Catalytic Converter Housing Sheet. Materials Today: Proceedings, 22, 1326–1332. https://doi.org/10.1016/j.matpr.2020.01.425
  62. Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, 100291. https://doi.org/10.1016/j.rechem.2022.100291
  63. Sujiono, E. H., Zurnansyah, Zabrian, D., Dahlan, M. Y., Amin, B. D., Samnur, & Agus, J. (2020). Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization. Heliyon, 6(8), e04568. https://doi.org/10.1016/j.heliyon.2020.e04568
  64. Tonoya, T., Matsui, Y., Hinago, H., & Ishikawa, M. (2022). Microporous activated carbon derived from azulmic acid precursor with high sulfur loading and its application to lithium-sulfur battery cathode. Electrochemistry Communications, 140(August), 107333. https://doi.org/10.1016/j.elecom.2022.107333
  65. Tran, T. Van, Nguyen, D. T. C., Nguyen, T. T. T., Nguyen, D. H., Alhassan, M., Jalil, A. A., Nabgan, W., & Lee, T. (2023). A critical review on pineapple (Ananas comosus) wastes for water treatment, challenges and future prospects towards circular economy. Science of The Total Environment, 856(July 2022), 158817. https://doi.org/10.1016/j.scitotenv.2022.158817
  66. Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
  67. Udhayakumar, N., Ramesh Babu, S., Bharathwaaj, R., & Sathyamurthy, R. (2021). An experimental study on emission characteristics in compression ignition engine with silver and zinc coated catalytic converter. Materials Today: Proceedings, 47, 4959–4964. https://doi.org/10.1016/j.matpr.2021.04.314
  68. Vembathu Rajesh, A., Mathalai Sundaram, C., Sivaganesan, V., Nagarajan, B., & Harikishore, S. (2020). Emission reduction techniques in CI engine with catalytic converter. Materials Today: Proceedings, 21, 98–103. https://doi.org/10.1016/j.matpr.2019.05.369
  69. Venkatesan, S. P., Uday, D. S., Hemant, B. K., Kushwanth Goud, K. R., Kumar, G. L., & Kumar, K. P. (2017). I.C. Engine emission reduction by copper oxide catalytic converter. IOP Conference Series: Materials Science and Engineering, 197(1). https://doi.org/10.1088/1757-899X/197/1/012026
  70. Waly, S. M., El-Wakil, A. M., El-Maaty, W. M. A., & Awad, F. S. (2021). Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon. Journal of Saudi Chemical Society, 25(8), 101296. https://doi.org/10.1016/j.jscs.2021.101296
  71. Zhang, G., Liu, H., Liu, R., & Qu, J. (2009). Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface. Journal of Hazardous Materials, 168(2–3), 820–825. https://doi.org/10.1016/j.jhazmat.2009.02.137
  72. Zhang, S., Zeng, M., Xu, W., Li, J., Li, J., Xu, J., & Wang, X. (2013). Polyaniline nanorods dotted on graphene oxide nanosheets as a novel super adsorbent for Cr(vi). Dalton Transactions, 42(22), 7854–7858. https://doi.org/10.1039/c3dt50149c

Last update:

  1. A Comprehensive Review on Potential Application of Nanomaterials in the Field of Agricultural Engineering

    Manojit Chowdhury, Ajay Kushwah, Ajay N. Satpute, Sanjay Kumar Singh, Amit Kumar Patil. Journal of Biosystems Engineering, 48 (4), 2023. doi: 10.1007/s42853-023-00204-x
  2. Greener carbon capture using microwave heating for the development of cellulose-based adsorbents

    Simba Biti, Alan J. McCue, Davide Dionisi, Inês Graça, Claudia Fernández Martín. Fuel, 358 , 2024. doi: 10.1016/j.fuel.2023.130246

Last update: 2024-03-28 19:24:10

No citation recorded.