skip to main content

Sustainable Long-Term Energy Supply and Demand: The Gradual Transition to a New and Renewable Energy System in Indonesia by 2050

1Master Program of Energy, School of Postgraduate Studies, Diponegoro University, Indonesia

2The National Research and Innovation Agency, Indonesia

Received: 19 Nov 2022; Revised: 15 Jan 2023; Accepted: 8 Feb 2023; Available online: 22 Feb 2023; Published: 15 Mar 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The objective of this work is to evaluate long-term energy demand and supply decarbonization in Indonesia. On the demand side, electric vehicles and biofuels for transportation and induction stoves and urban gas networks for households were considered. Based on the National Energy Policy, primary energy supply projections optimized NRE power plant use and increase NRE's position in the national energy mix. A Low Emissions Analysis Platform (LEAP) model evaluates 2020–2050 energy demand predictions and low-carbon energy systems. This study's sustainable transition options require two basic technical advances. First, electric vehicles and induction stoves would reduce oil fuel usage by 228.34 million BOE and LPG consumption by 24.65 million BOE. Second, power generation should be decarbonized using NRE sources such as solar, hydro, biomass, geothermal, and nuclear. In 2050, solar power (40 GW), hydropower (38.47 GW), geothermal power (10 GW), and other NRE (24.45 GW, 18.67 GW of which would be biomass power) would dominate NRE electrical capacity. Biomass co-firing for coal power plants would reach 36.35 million tons in 2050. In 2035, the Java-Bali or West Kalimantan system will deploy 1 GW of nuclear power reactors, rising to 4 GW by 2050. Under the Transition Energy (TE) scenario, by 2025 and 2050, new and renewable energy would make up 23% and 31% of the primary energy mix, respectively, reducing GHG emissions per capita. According to predictions, annual GHG emissions per capita will decline from the BAU scenario's 4.48 tonne CO2eq/capita in 2050 to the TE scenario's 4.1 tonne.

Fulltext View|Download
Keywords: Sustainability; Decarbonization; NRE; GHG emissions; LEAP.
Funding: National Research and Innovation Agency (BRIN)

Article Metrics:

  1. Adewuyi, O. B., Kiptoo, M. K., Afolayan, A. F., Amara, T., Alawode, O. I., & Senjyu, T. (2020). Challenges and prospects of Nigeria’s sustainable energy transition with lessons from other countries’ experiences. Energy Reports, 6, 993–1009. https://doi.org/10.1016/j.egyr.2020.04.022
  2. Adiatma, J. C., & Marciano, I. (2020). The Role of Electric Vehicles in Decarbonizing Indonesia’s Road Transport Sector (F. Tumiwa (ed.)). Institute for Essential Services Reform (IESR). https://iesr.or.id/en/pustaka/the-role-of-electric-vehicles-in-decarbonizing-indonesias-road-transport-sector
  3. Ali, S., Stewart, R. A., & Sahin, O. (2021). Drivers and barriers to the deployment of pumped hydro energy storage applications: Systematic literature review. Cleaner Engineering and Technology, 5, 100281. https://doi.org/10.1016/j.clet.2021.100281
  4. Azzuni, A., Aghahosseini, A., Ram, M., Bogdanov, D., Caldera, U., & Breyer, C. (2020). Energy security analysis for a 100% renewable energy transition in Jordan by 2050. Sustainability (Switzerland), 12(12), 4921. https://doi.org/10.3390/SU12124921
  5. Banerjee, M., Prasad, R., Rehman, I. H., & Gill, B. (2016). Induction stoves as an option for clean cooking in rural India. Energy Policy, 88, 159–167. https://doi.org/10.1016/j.enpol.2015.10.021
  6. Barran, I., & Setiawan, E. A. (2022). PV Rooftop Repowering Potential in Indonesia: Study Case. IOP Conference Series: Earth and Environmental Science, 997(1). https://doi.org/10.1088/1755-1315/997/1/012016
  7. BPS RI. (2018). Proyeksi Penduduk Indonesia 2015-2045 Hasil SUPAS 2015. https://www.bps.go.id/publication/2018/10/19/78d24d9020026ad95c6b5965/proyeksi-penduduk-indonesia-2015-2045-hasil-supas-2015.html
  8. Burke, P. J., Widnyana, J., Anjum, Z., Aisbett, E., Resosudarmo, B., & Baldwin, K. G. H. (2019). Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy, 132(July), 1216–1228. https://doi.org/10.1016/j.enpol.2019.05.055
  9. Charles Heaps, Eric Kemp-Benedict, J. V. (2021). Next energy modelling system for optimization (NEMO). Stockholm Environment Institute. https://www.sei.org/projects-and-tools/tools/nemo-the-next-energy-modeling-system-for-optimization/
  10. Cho, I., Oh, S., Kim, S., Ardin, F., & Heo, E. (2021). Determinants of nuclear power expansion in Indonesia. Nuclear Engineering and Technology, 53(1), 314–321. https://doi.org/10.1016/j.net.2020.06.008
  11. Clausen, L. T., & Rudolph, D. (2020). Renewable energy for sustainable rural development: Synergies and mismatches. Energy Policy, 138, 111289. https://doi.org/10.1016/j.enpol.2020.111289
  12. Deendarlianto, Widyaparaga, A., Sopha, B. M., Budiman, A., Muthohar, I., Setiawan, I. C., Lindasista, A., Soemardjito, J., & Oka, K. (2017). Scenarios analysis of energy mix for road transportation sector in Indonesia. Renewable and Sustainable Energy Reviews, 70(2), 13–23. https://doi.org/10.1016/j.rser.2016.11.206
  13. Deendarlianto, Widyaparaga, A., Widodo, T., Handika, I., Chandra Setiawan, I., & Lindasista, A. (2020). Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets. Renewable Energy, 146, 504–518. https://doi.org/10.1016/j.renene.2019.06.169
  14. Dialga, I. (2021). Evaluating Normandy ’ s sustainable development and energy transition policies. Journal of Cleaner Production, 305, 127096. https://doi.org/10.1016/j.jclepro.2021.127096
  15. Direktur Jenderal Industri Logam, Mesin, Alat Transportasi, Dan Elektronika, K. (2021). Pengembangan Industri Kendaraan Bermotor Listrik Berbasis Baterai (KBLBB). Kementerian Perindustrian
  16. Edi Hilmawan, Fitriana, I., Sugiyono, A., & Adiarso (Eds.). (n.d.). Outlook Energi Indonesia 2021. Pusat Pengkajian Industri Proses dan Energi (PPIPE) , BPPT. https://www.bppt.go.id/dokumen/file/865/download
  17. Elrahmani, A., Hannun, J., Eljack, F., & Kazi, M. K. (2021). Status of renewable energy in the GCC region and future opportunities. Current Opinion in Chemical Engineering, 31, 100664. https://doi.org/10.1016/j.coche.2020.100664
  18. European Environment Agency. (2016). Electric vehicles and the energy sector - impacts on Europe’s future emissions. https://www.eea.europa.eu/publications/electric-vehicles-and-the-energy
  19. Ferroukhi, R., Lopez-Peña, A., Kieffer, G., Nagpal, D., Hawila, D., Khalid, A., El-Katiri, L., Vinci, S., & Fernandez, A. (2016). Renewable Energy Benefits: Measuring the Economics. IRENA International Renewable Energy Agency, 92. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Measuring-the-Economics_2016.pdf
  20. GoI. (2014). Government Regulation No. 79/2014 on National Energy Policy-Kebijakan Energi Nasional (KEN). Government of Indonesia. https://jdih.esdm.go.id/peraturan/PP%20No.%2079%20Thn%202014.pdf
  21. GoI. (2017). Presidential Decree No. 22/2017 regarding National Energy General Plan-Rencana Umum Energi Nasional (RUEN). Government of Indonesia. https://www.esdm.go.id/assets/media/content/content-rencana-umum-energi-nasional-ruen.pdf
  22. GoI. (2019). Presidential Decree No. 55/2019 regarding the Acceleration of the Battery-Based Electric Motor Vehicle (KBLBB) Program for Road Transportation-percepatan program KBLBB untuk transportasi jalan. Government of Indonesia. https://jdih.esdm.go.id/storage/document/Perpres%20Nomor%2055%20Tahun%202019.pdf
  23. GoI. (2022). Presidential Decree No. 112/2022 on Acceleration of Renewable Energy Development for Electricity Power Supply-Percepatan Pengembangan Energi Terbarukan Untuk Penyediaan Tenaga Listrik. Government of Indonesia. https://drive.esdm.go.id/wl/?id=o8WDm5f2AXpP9Awt2y4CFnvB3t2JdOAf
  24. Gould, C. F., Schlesinger, S. B., Molina, E., Bejarano, M. L., Valarezo, A., & Jack, D. W. (2020). Household fuel mixes in peri-urban and rural Ecuador: Explaining the context of LPG, patterns of continued firewood use, and the challenges of induction cooking. Energy Policy, 136(May 2019), 111053. https://doi.org/10.1016/j.enpol.2019.111053
  25. Hakam, D. F., Nugraha, H., Wicaksono, A., Rahadi, R. A., & Kanugrahan, S. P. (2022). Mega conversion from LPG to induction stove to achieve Indonesia’s clean energy transition. Energy Strategy Reviews, 41(May), 100856. https://doi.org/10.1016/j.esr.2022.100856
  26. Handayani, K., Krozer, Y., & Filatova, T. (2019). From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning. Energy Policy, 127(September 2018), 134–146. https://doi.org/10.1016/j.enpol.2018.11.045
  27. Heaps, C. G. (2021). LEAP: The Low Emissions Analysis Platform. [Software version: 2020.1.47]. Stockholm Environment Institute. Somerville, MA, USA. https://leap.sei.org
  28. IEA. (2022). CO2 emissions intensity of GDP, 1990-2021. IEA Paris. https://www.iea.org/data-and-statistics/charts/co2-emissions-intensity-of-gdp-1990-2021
  29. IESR. (2018). Igniting A Rapid Deployment Of Renewable Energy In Indonesia: Lessons Learned From Three Countries. 1–92. https://iesr.or.id/wp-content/uploads/2019/05/IESR_Research_Igniting-a-Rapid-Deployment-of-RE-in-Indonesia.pdf
  30. Indrawan, N., Thapa, S., Rahman, S. F., Park, J. H., Park, S. H., Wijaya, M. E., Gobikrishnan, S., Purwanto, W. W., & Park, D. H. (2017). Palm biodiesel prospect in the Indonesian power sector. Environmental Technology and Innovation, 7, 110–127. https://doi.org/10.1016/j.eti.2017.01.001
  31. IRENA. (2021). World energy transitions outlook. In Irena. https://irena.org/publications/2021/March/World-Energy-Transitions-Outlook
  32. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research, 9(March), 1–45. https://doi.org/10.3389/fenrg.2021.743114
  33. Kachoee, M. S., Salimi, M., & Amidpour, M. (2018). The long-term scenario and greenhouse gas effects cost-benefit analysis of Iran’s electricity sector. Energy, 143, 585–596. https://doi.org/10.1016/j.energy.2017.11.049
  34. Kementerian Perindustrian. (2020). Permenperin No. 27/2020 ttg spesifikasi, peta jalan pengembangan, dan ketentuan penghitungan nilai TKDN KBLBB (Battery Electric Vehicle). https://www.gaikindo.or.id/wp-content/uploads/2020/11/Permenperin_27_2020-TKDN-KBL-Berbasis-Baterai.pdf
  35. KESDM. (2015). Permen ESDM No. 12/2015 ttg Penyediaan, Pemanfaatan, dan Tata Niaga BBN (Biofuel) sbg Bahan Bakar Lain. https://jdih.esdm.go.id/peraturan/Permen%20ESDM%2012%20Thn%202015.pdf
  36. KESDM. (2021). Handbook of Energy and Economic Statistics of Indonesia 2020 (A. C. Adi & F. Lasnawatin (Eds.)). Ministry of Energy and Mineral Resources Republic of Indonesia. https://www.esdm.go.id/assets/media/content/content-handbook-of-energy-and-economic-statistics-of-indonesia-2020.pdf
  37. Khan, I., Zakari, A., Zhang, J., Dagar, V., & Singh, S. (2022). A study of trilemma energy balance, clean energy transitions, and economic expansion in the midst of environmental sustainability: New insights from three trilemma leadership. Energy, 248, 123619. https://doi.org/10.1016/j.energy.2022.123619
  38. Kumar, S., & Madlener, R. (2016). CO2 emission reduction potential assessment using renewable energy in India. Energy, 97, 273–282. https://doi.org/10.1016/j.energy.2015.12.131
  39. Langer, J., Simanjuntak, S., Pfenninger, S., Laguna, A. J., Lavidas, G., Polinder, H., Quist, J., Rahayu, H. P., & Blok, K. (2022). How offshore wind could become economically attractive in low-resource regions like Indonesia. IScience, 25(9), 104945. https://doi.org/10.1016/j.isci.2022.104945
  40. Lin, C., Yin, K., Moslehpour, M., Viet, H., Dang, K., & Quang, T. (2022). Factors influencing the sustainable energy technologies adaptation in ASEAN countries. Sustainable Energy Technologies and Assessments, 53(PC), 102668. https://doi.org/10.1016/j.seta.2022.102668
  41. Maulidia, M., Dargusch, P., Ashworth, P., & Ardiansyah, F. (2019). Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective. Renewable and Sustainable Energy Reviews, 101(February 2018), 231–247. https://doi.org/10.1016/j.rser.2018.11.005
  42. Minister for Environment and Forestry. (2021). Indonesia Long-Term Strategy For Low Carbon And Climate Resilience 2050 (Indonesia LTS-LCCR 2050). Ministry of Environment and Forestry. https://unfccc.int/sites/default/files/resource/Indonesia_LTS-LCCR_2021.pdf
  43. Ministry Of Energy And Mineral Resources. (2021). Energy Transition Roadmap Towards Carbon Neutral. https://www.esdm.go.id/en/media-center/news-archives/road-map-to-carbon-neutrality-is-being-prepared-says-energy-minister
  44. Mirjat, N. H., Uqaili, M. A., Harijan, K., Walasai, G. Das, Mondal, M. A. H., & Sahin, H. (2018). Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis. Energy, 165, 512–526. https://doi.org/10.1016/j.energy.2018.10.012
  45. Moorthy, K., Patwa, N., & Gupta, Y. (2019). Breaking barriers in deployment of renewable energy. Heliyon, September 2018, e01166. https://doi.org/10.1016/j.heliyon.2019.e01166
  46. National Energy Council. (2019). Indonesia Energy Outlook 2019 (S. Abdurrahman, M. Pertiwi, & Walujanto (Eds.)). Secretary General of the National Energy Council. https://www.esdm.go.id/assets/media/content/content-indonesia-energy-outlook-2019-english-version.pdf
  47. Ordonez, J. A., Fritz, M., & Eckstein, J. (2022). Coal vs. renewables: Least-cost optimization of the Indonesian power sector. Energy for Sustainable Development, 68, 350–363. https://doi.org/10.1016/j.esd.2022.04.017
  48. Oyedepo, S. O. (2012). On energy for sustainable development in Nigeria. Renewable and Sustainable Energy Reviews, 16(5), 2583–2598. https://doi.org/10.1016/j.rser.2012.02.010
  49. Potrč, S., Čuček, L., Martin, M., & Kravanja, Z. (2021). Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renewable and Sustainable Energy Reviews, 146. https://doi.org/10.1016/j.rser.2021.111186
  50. PT.PLN (Persero). (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) - Business Plan for Electricity Provision 2021-2030. https://web.pln.co.id/statics/uploads/2021/10/ruptl-2021-2030.pdf
  51. Putriastuti, M. A. C., & Fitriyanti, V. (2022). A Turning Point for Renewable Energy in Indonesia? Https://Www.Purnomoyusgiantorocenter.Org/a-Turning-Point-for-Renewable-Energy-in-Indonesia/1–6
  52. Rahman, A., Dargusch, P., & Wadley, D. (2021). The political economy of oil supply in Indonesia and the implications for renewable energy development. Renewable and Sustainable Energy Reviews, 144(March), 111027. https://doi.org/10.1016/j.rser.2021.111027
  53. Sambodo, M. T., Yuliana, C. I., Hidayat, S., Novandra, R., Handoyo, F. W., Farandy, A. R., Inayah, I., & Yuniarti, P. I. (2022). Breaking barriers to low-carbon development in Indonesia: deployment of renewable energy. Heliyon, 8(4), e09304. https://doi.org/10.1016/j.heliyon.2022.e09304
  54. Sani, L., Khatiwada, D., Harahap, F., & Silveira, S. (2021). Decarbonization pathways for the power sector in Sumatra, Indonesia. Renewable and Sustainable Energy Reviews, 150(July 2020), 111507. https://doi.org/10.1016/j.rser.2021.111507
  55. Suryani, A. S. (2022). Preparation For Carbon Tax Implementation In Indonesia. In A Brief Study Of Actual And Strategic Issues: Vol. Vol.XIV
  56. Tanoto, Y., Haghdadi, N., Bruce, A., & MacGill, I. (2021). Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid. Energy, 227, 120474. https://doi.org/10.1016/j.energy.2021.120474
  57. The World Bank. (2020). CO2 emissions (metric tons per capita). Climate Watch. 2020. GHG Emissions. Washington, DC: World Resources Institute. https://data.worldbank.org/indicator/EN.ATM.CO2E.PC
  58. Ulrike Lehr, P. U. (2017). Economic Impacts of Renewable Energy Increase in Germany. In Towards 100% Renewable Energy (pp. 263–272). http://theargeo.org/November/files/Economic%20Impacts%20of%20Renewable%20Energy%20Promotion%20in%20Germany.pdf
  59. Vidadili, N., Suleymanov, E., Bulut, C., & Mahmudlu, C. (2017). Transition to renewable energy and sustainable energy development in Azerbaijan. Renewable and Sustainable Energy Reviews, 80(April), 1153–1161. https://doi.org/10.1016/j.rser.2017.05.168
  60. Vidinopoulos, A., Whale, J., & Fuentes Hutfilter, U. (2020). Assessing the technical potential of ASEAN countries to achieve 100% renewable energy supply. Sustainable Energy Technologies and Assessments, 42(October), 100878. https://doi.org/10.1016/j.seta.2020.100878
  61. Wahono, J., Brady, M., & Baral, H. (2022). Ensuring monetary, human capital and natural capital returns in biomass production: Lessons from the Mentawai biomass gasification power plant project. In Bioenergy for landscape restoration and livelihoods: Re-creating energy-smart ecosystems on degraded landscape. CIFOR. https://doi.org/10.17528/cifor/008500
  62. Wattana, B., & Aungyut, P. (2022). Impacts of Solar Electricity Generation on the Thai Electricity Industry. International Journal of Renewable Energy Development, 11(1), 157–163. https://doi.org/10.14710/ijred.2022.41059
  63. Wong, J. (2021). A combined niche transition and energy justice study of biomass gasification in Indonesia. Thesis. TU Delft. http://resolver.tudelft.nl/uuid:be0ed7f3-b696-4756-b31f-59b4b17ecb86
  64. Yudiartono, Y., Windarta, J., & Adiarso, A. (2022). Analisis Prakiraan Kebutuhan Energi Nasional Jangka Panjang Untuk Mendukung Program Peta Jalan Transisi Energi Menuju Karbon Netral. Jurnal Energi Baru Dan Terbarukan, Vol. 3, No(Oktober), pp 201 – 217. https://doi.org/10.14710/jebt.2022.14264

Last update:

  1. An Analysis of National Position, Opportunity, and Challenge of Indonesia’s Nuclear Program to Support Net-Zero Emissions by 2060

    Mujammil Asdhiyoga Rahmanta, Andrew Cahyo Adhi, Handrea Bernando Tambunan, Wigas Digwijaya, Natalina Damanik, Rahmat Adiprasetya Al Hasibi. Energies, 16 (24), 2023. doi: 10.3390/en16248089
  2. Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia: A techno-economic and environmental perspective

    Martin Tjahjono, Isabella Stevani, Gracheilla A Siswanto, Arief Adhitya, Iskandar Halim. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.58035

Last update: 2024-06-23 19:19:15

No citation recorded.