skip to main content

An investigation of a 3D printed micro-wind turbine for residential power production

1Department of Mechanical Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan

2Department of Electrical Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan

Received: 20 Feb 2023; Revised: 25 Mar 2023; Accepted: 11 Apr 2023; Available online: 21 Apr 2023; Published: 15 May 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency

Fulltext View|Download
Keywords: Wind energy harvest; Low-speed wind turbine testing; Structural test; CFD; Model performance

Article Metrics:

  1. Abrar, M. A., Mahbub, A. I., & Mamun, M. (2014). Design optimization of a horizontal axis micro wind turbine through development of CFD model and experimentation. Procedia Engineering, 90, 333-338. https://doi.org/10.1016/j.proeng.2014.11.858
  2. Ajadi, T., Cuming, V., Boyle, R., Strahan, D., Kimmel, M., Logan, M., & McCrone, A. (2020). Global Trends in Renewable Energy Investment 2020. https://www.fs-unep-centre.org/wp-content/uploads/2020/06/GTR_2020.pdf
  3. Akour, S. N., Al-Heymari, M., Ahmed, T., & Khalil, K. A. (2018). Experimental and theoretical investigation of micro wind turbine for low wind speed regions. Renewable energy, 116, 215-223. https://doi.org/10.1016/j.renene.2017.09.076
  4. Aljafari, B., Samithas, D., Balachandran, P. K., Anandan, S., & Babu, T. S. (2022). Performance Analysis of PLA Material Based Micro-Turbines for Low Wind Speed Applications. Polymers, 14(19), 4180. https://doi.org/10.3390/polym14194180
  5. ANSYS-Fluent. (2009). ANSYS FLUENT 12.0 (Theory Guide,” ANSYS, Issue
  6. Aravindhan, N., Natarajan, M., Ponnuvel, S., & Devan, P. (2022). Recent developments and issues of small-scale wind turbines in urban residential buildings-A review. Energy Environment. Online first, https://doi.org/10.1177/0958305X221084038
  7. Ayhan, D., & Sağlam, Ş. (2012). A technical review of building-mounted wind power systems and a sample simulation model. Renewable Sustainable Energy Reviews, 16(1), 1040-1049. https://doi.org/10.1016/j.rser.2011.09.028
  8. Bangi, V.K.T., Chaudhary, Y., Guduru, R.K., Aung, K.Tand Reddy, G.N. (2017) Preliminary investigation on generation of electricity using micro wind turbines placed on a car. Int. Journal of Renewable Energy Development, 6(1), 75-81. https://doi.org/10.14710/ijred.6.1.75-81
  9. Carré, A., Roux, É., Tabourot, L., & Gasnier, P. (2022). Innovative blade shape for micro wind turbines. 2022 Wireless Power Week (WPW), https://doi.org/10.1109/WPW54272.2022.9854036
  10. Chang, C. C. W., Ding, T. J., Ping, T. J., Chao, K. C., & Bhuiyan, M. A. S. (2022). Getting more from the wind: Recent advancements and challenges in generators development for wind turbines. Sustainable Energy Technologies Assessments, 53, 102731. https://doi.org/10.1016/j.seta.2022.102731
  11. Chaudhuri, A., Datta, R., Kumar, M. P., Davim, J. P., & Pramanik, S. (2022). Energy conversion strategies for wind energy system: Electrical, mechanical and material aspects. Materials, 15(3), 1232. https://doi.org/10.3390/ma15031232
  12. Chudzik, S. (2023). Wind Microturbine with Adjustable Blade Pitch Angle. Energies, 16(2), 945. https://doi.org/10.3390/en16020945
  13. Clausen, P., & Wood, D. (2000). Recent advances in small wind turbine technology. Wind Engineering, 24(3), 189-201. https://doi.org/10.1260/0309524001495558
  14. Council, G. W. E. (2021). GWEC Global Wind Report 2021. https://gwec.net/global-wind-report-2021/
  15. Diógenes, J. R. F., Claro, J., Rodrigues, J. C., & Loureiro, M. V. (2020). Barriers to onshore wind energy implementation: A systematic review. Energy Research Social Science, 60, 101337. https://doi.org/10.1016/j.erss.2019.101337
  16. Fernandes, J., Deus, A. M., Reis, L., Vaz, M. F., & Leite, M. (2018). Study of the influence of 3D printing parameters on the mechanical properties of PLA. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, https://dr.ntu.edu.sg/handle/10220/45960
  17. Gipe, P. (2009). Wind energy basics: a guide to home and community-scale wind-energy systems. Chelsea Green Publishing
  18. Gordon, M., Weber, M., & Raj, P. (2021). Global energy demand to grow 47% by 2050, with oil still top source: US eia Retrieved 10.03.2023 from https://www.spglobal.com/platts/en/market-insights/latest-news/oil/100621-global-energy-demand-to-grow-47-by-2050-with-oil-still-top-source-us-eia
  19. Hamad, K., Kaseem, M., & Deri, F. (2011). Melt rheology of poly (lactic acid)/low density polyethylene polymer blends. Advances in Chemical Engineering Science, 1(4), 208-214. http://www.10.4236/aces.2011.14030
  20. IRENA. (2022). World Energy Transitions Outlook 2022: 1.5°C Pathway. International Renewable Energy Agency, Abu Dhabi; y, Abu Dhabi.. https://www.irena.org/publications
  21. Kumar, N., & Prakash, O. (2023). Analysis of wind energy resources from high rise building for micro wind turbine: A review. Wind Engineering, 47(1), 190-219. https://doi.org/10.1177/0309524X221118684
  22. Lakatos, L., Hevessy, G., & Kovács, J. (2011). Advantages and disadvantages of solar energy and wind-power utilization. World Futures, 67(6), 395-408. https://doi.org/10.1080/02604020903021776
  23. Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal. 21(5), 604-617; https://doi.org/10.1108/RPJ-09-2014-0135
  24. Leung, D., Deng, Y., & Leung, M. (2010). Design optimization of a cost-effective micro wind turbine. Proceedings of the World Congress on Engineering,
  25. Li, G., Li, M., Taylor, R., Hao, Y., Besagni, G., & Markides, C. (2022). Solar energy utilisation: Current status and roll-out potential. Applied Thermal Engineering, 209, 118285. https://doi.org/10.1016/j.applthermaleng.2022.118285
  26. Matsson, J. E. (2022). An Introduction to ANSYS Fluent 2022. Sdc Publications
  27. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
  28. Naqash, M. T., Aburamadan, M. H., Harireche, O., AlKassem, A., & Farooq, Q. U. (2021). The Potential of Wind Energy and Design Implications on Wind Farms in Saudi Arabia. International Journal of Renewable Energy Development, 10(4), 839-856. https://doi.org/10.14710/ijred.2021.38238
  29. Nijssen, R., & Brøndsted, P. (2023). Fatigue as a design driver for composite wind turbine blades. In Advances in wind turbine blade design and materials (pp. 217-248). Elsevier. https://doi.org/10.1016/B978-0-08-103007-3.00006-9
  30. Ozgener, O. (2006). A small wind turbine system (SWTS) application and its performance analysis. Energy conversion management, 47(11-12), 1326-1337. https://doi.org/10.1016/j.enconman.2005.08.014
  31. Peacock, A., Jenkins, D., Ahadzi, M., Berry, A., & Turan, S. (2008). Micro wind turbines in the UK domestic sector. Energy buildings, 40(7), 1324-1333. https://doi.org/10.1016/j.enbuild.2007.12.004
  32. Raj, S. A., Muthukumaran, E., & Jayakrishna, K. (2018). A case study of 3D printed PLA and its mechanical properties. Materials Today: Proceedings, 5(5), 11219-11226. https://doi.org/10.1016/j.matpr.2018.01.146
  33. Rao, K. (2019). Wind energy for power generation: meeting the challenge of practical implementation. Springer Nature. ISSN: 978-3-319-75134-4; https://doi.org/10.1007/978-3-319-75134-4
  34. Raut, S., Shrivas, S., Sanas, R., Sinnarkar, N., & Chaudhary, M. (2017). Simulation of micro wind turbine blade in Q-Blade. J. Res. Appl. Sci. Eng. Technol, 5(4), 256-262. https://doi.org/10.22214/ijraset.2017.4048
  35. Razzetti, D. (2022). Aerodynamic design of a micro wind turbine and performance analysis with QBlade. Thesis. Politecnico di Torino. http://webthesis.biblio.polito.it/id/eprint/22493
  36. Rehman, A., Alam, M. M., Ozturk, I., Alvarado, R., Murshed, M., Işık, C., & Ma, H. (2023). Globalization and renewable energy use: how are they contributing to upsurge the CO2 emissions? A global perspective. Environmental Science Pollution Research, 30(4), 9699-9712. https://doi.org/10.1007/s11356-022-22775-6
  37. Roga, S., Bardhan, S., Kumar, Y., & Dubey, S. K. J. (2022). Recent technology and challenges of wind energy generation: A review. Sustainable Energy Technologies Assessments, 52, 102239. https://doi.org/10.1016/j.seta.2022.102239
  38. Scarabaggio, P., Grammatico, S., Carli, R., & Dotoli, M. (2021). Distributed demand side management with stochastic wind power forecasting. IEEE Transactions on Control Systems Technology, 30(1), 97-112. https://doi.org/10.1109/TCST.2021.3056751
  39. Selig, M. S. (1997). Summary of low speed airfoil data Vol. 3. SoarTech Publications
  40. Spera David, A. (1995). Wind Turbine Technology, 3rd ed. ASME Press
  41. Sun, H., Dang, Y., Mao, W., & Luo, D. (2021). Optimal path for overcoming barriers in developing China’s wind energy industry. Environmental Science Pollution Research, 28(27), 35597-35612. https://doi.org/10.1007/s11356-021-12531-7
  42. Tan, J. D., Chang, C. C. W., Bhuiyan, M. A. S., Nisa’Minhad, K., & Ali, K. (2022). Advancements of wind energy conversion systems for low-wind urban environments: A review. Energy Reports, 8, 3406-3414. https://doi.org/10.1016/j.egyr.2022.02.153
  43. Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable Sustainable Energy Reviews, 56, 1351-1371. https://doi.org/10.1016/j.rser.2015.12.027
  44. White, L., & Wakes, S. (2014). Permitting best use of wind resource for small wind-turbines in rural New Zealand: A micro-scale CFD examination. Energy for Sustainable Development, 21, 1-6. https://doi.org/10.1016/j.esd.2014.04.003
  45. Wilberforce, T., Olabi, A., Sayed, E. T., Alalmi, A. H., & Abdelkareem, M. A. (2023). Wind turbine concepts for domestic wind power generation at low wind quality sites. Journal of Cleaner Production, 394, 136137. https://doi.org/10.1016/j.jclepro.2023.136137
  46. Wu, Q., & Sun, Y. (2018). Modeling and modern control of wind power. John Wiley & Sons. ISBN: 978-1-119-23626-9; https://www.wiley.com/en-br/Modeling+and+Modern+Control+of+Wind+Power-p-9781119236399

Last update:

  1. Performance analysis of flat winglet deflector on hybrid solar PV-Wind turbine system: Case study on twisted Savonius turbine

    Miftah Hijriawan, Zainal Arifin, Dominicus Tjahjana, Ilham Kuncoro. Journal of Applied Engineering Science, 22 (2), 2024. doi: 10.5937/jaes0-44759
  2. CFD analysis of key factors impacting the aerodynamic performance of the S830 wind turbine airfoil

    Le Thi Tuyet Nhung, Nguyen Van Y, Dinh Cong Truong, Vu Dinh Quy. International Journal of Renewable Energy Development, 13 (6), 2024. doi: 10.61435/ijred.2024.60249
  3. Enhancing Efficiency and Reliability of Tidal Stream Energy Conversion through Swept-Blade Design

    Yangyang Zheng, Wenxian Yang, Kexiang Wei, Yanling Chen, Hongxiang Zou. Energies, 17 (2), 2024. doi: 10.3390/en17020334

Last update: 2024-12-26 11:12:14

No citation recorded.