1School of Chemical, Biological. and Materials Engineering and Sciences, Mapua University, Manila, Philippines
2Center for Renewable Bioenergy Research, Mapua University, Manila, Philippines
BibTex Citation Data :
@article{IJRED53222, author = {Mel Patrick Malinis and Herna Jones Velasco and Kristopher Ray Pamintuan}, title = {Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes}, journal = {International Journal of Renewable Energy Development}, volume = {12}, number = {5}, year = {2023}, keywords = {3D-printing; aquatic PMFC; performance evaluation; electrodes; electrochemistry}, abstract = { Plant-Microbial Fuel Cells (PMFCs) are a sustainable derivative of fuel cells that capitalizes on plant rhizodeposition to generate bioelectricity. In this study, the performance of the novel 3D-printed aquatic PMFC assembly with Eichhornia crassipes as the model plant was investigated. The design made use of 1.75 mm Protopasta Conductive Polylactic Acid (PLA) for the electrodes and 1.75 mm CCTREE Polyethylene Terephthalate Glycol (PETG) filaments for the separator. Three systems were prepared with three replicates each: PMFCs with the original design dimensions (System A), PMFCs with cathode-limited surface area variations (System B), and PMFCs with anode-limited surface area variations (System C). The maximum power density obtained by design was 82.54 µW/m 2 , while the average for each system is 26.99 µW/m2, 36.24 µW/m 2 , and 6.81 µW/m 2 , respectively. The effect of variations on electrode surface area ratio was also examined, and the results suggest that the design benefits from increasing the cathode surface area up to a cathode-anode surface area ratio of 2:1. This suggests that the cathode is the crucial component for this design due to it facilitating the rate-limiting step. Plant health was also found to be a contributing factor to PMFC performance, thereby suggesting that PMFCs are an interplay of several factors not limited to electrode surface area alone. The performance of the novel PMFC did not achieve those obtained from existing studies. Nevertheless, the result of this study indicates that 3D-printing technology is a possible retrofit for PMFC technology and can be utilized for scale-up and power amplification. }, pages = {942--951} doi = {10.14710/ijred.2023.53222}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/53222} }
Refworks Citation Data :
Plant-Microbial Fuel Cells (PMFCs) are a sustainable derivative of fuel cells that capitalizes on plant rhizodeposition to generate bioelectricity. In this study, the performance of the novel 3D-printed aquatic PMFC assembly with Eichhornia crassipes as the model plant was investigated. The design made use of 1.75 mm Protopasta Conductive Polylactic Acid (PLA) for the electrodes and 1.75 mm CCTREE Polyethylene Terephthalate Glycol (PETG) filaments for the separator. Three systems were prepared with three replicates each: PMFCs with the original design dimensions (System A), PMFCs with cathode-limited surface area variations (System B), and PMFCs with anode-limited surface area variations (System C). The maximum power density obtained by design was 82.54 µW/m2, while the average for each system is 26.99 µW/m2, 36.24 µW/m2, and 6.81 µW/m2, respectively. The effect of variations on electrode surface area ratio was also examined, and the results suggest that the design benefits from increasing the cathode surface area up to a cathode-anode surface area ratio of 2:1. This suggests that the cathode is the crucial component for this design due to it facilitating the rate-limiting step. Plant health was also found to be a contributing factor to PMFC performance, thereby suggesting that PMFCs are an interplay of several factors not limited to electrode surface area alone. The performance of the novel PMFC did not achieve those obtained from existing studies. Nevertheless, the result of this study indicates that 3D-printing technology is a possible retrofit for PMFC technology and can be utilized for scale-up and power amplification.
Article Metrics:
Last update:
Development of a 3D-printed spongy electrode design for microbial fuel cell (MFC) using gyroid lattice
Enhancing microbial fuel cell performance with carbon powder electrode modifications for low-power sensors modules
Advances in amelioration of air pollution using plants and associated microbes: An outlook on phytoremediation and other plant-based technologies
Last update: 2025-01-14 04:13:04
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.