Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes

Mel Patrick D. Malinis, Herna Jones F Velasco, Kristopher Ray Pamintuan


DOI: https://doi.org/10.14710/ijred.2023.53222

Abstract


Plant-Microbial Fuel Cells (PMFCs) are a sustainable derivative of fuel cells that capitalizes on plant rhizodeposition to generate bioelectricity. In this study, the performance of the novel 3D-printed aquatic PMFC assembly with Eichhornia crassipes as the model plant was investigated. The design made use of 1.75 mm Protopasta Conductive Polylactic Acid (PLA) for the electrodes and 1.75 mm CCTREE Polyethylene Terephthalate Glycol (PETG) filaments for the separator. Three systems were prepared with three replicates each: PMFCs with the original design dimensions (System A), PMFCs with cathode-limited surface area variations (System B), and PMFCs with anode-limited surface area variations (System C). The maximum power density obtained by design was 82.54 µW/m2, while the average for each system is 26.99 µW/m2, 36.24 µW/m2, and 6.81 µW/m2, respectively. The effect of variations on electrode surface area ratio was also examined, and the results suggest that the design benefits from increasing the cathode surface area up to a cathode-anode surface area ratio of 2:1. This suggests that the cathode is the crucial component for this design due to it facilitating the rate-limiting step. Plant health was also found to be a contributing factor to PMFC performance, thereby suggesting that PMFCs are an interplay of several factors not limited to electrode surface area alone. The performance of the novel PMFC did not achieve those obtained from existing studies. Nevertheless, the result of this study indicates that 3D-printing technology is a possible retrofit for PMFC technology and can be utilized for scale-up and power amplification.


Keywords


3D-printing; aquatic PMFC; performance evaluation; electrodes; electrochemistry

Full Text:

PDF

References


Agrahari, R., Bayar, B., Abubackar, H. N., Giri, B. S., Rene, E. R., & Rani, R. (2022). Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere, 290, 133184. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133184

Atawa, B., Maneval, L., Alcouffe, P., Sudre, G., David, L., Sintes-Zydowicz, N., Beyou, E., & Serghei, A. (2022). In-situ coupled mechanical/electrical investigations on conductive TPU/CB composites: Impact of thermo-mechanically induced structural reorganizations of soft and hard TPU domains on the coupled electro-mechanical properties. Polymer, 256, 125147. https://doi.org/10.1016/J.POLYMER.2022.125147

Begcy, K., Wang, M., Chen, L. L., Wen, J., Qin, F., Shen, Y., Li, Z., Qu, H., Feng, J., Kong, L., Teri, G., Luan, H., & Cao, Z. (2022). Shade Delayed Flowering Phenology and Decreased Reproductive Growth of Medicago sativa L. 13, 835380. https://doi.org/10.3389/fpls.2022.835380

Bhandari, S., Lopez-Anido, R. A., & Gardner, D. J. (2019). Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 30. https://doi.org/10.1016/J.ADDMA.2019.100922

Chang, H. C., Sun, T., Sultana, N., Lim, M. M., Khan, T. H., & Ismail, A. F. (2016). Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Materials Science and Engineering: C, 61, 396–410. https://doi.org/10.1016/J.MSEC.2015.12.074

Dave, K., Darji, P., Gandhi, F., Singh, S., & Jadav, D. (2020). Bioelectrochemical Sysytem: An Eco-Friendly Approach To Generate Electricity Utilizing Plants And Microorganisms. https://doi.org/10.21203/rs.3.rs-64793/v1

De La Rosa, E. O., Castillo, J. V., Campos, M. C., Pool, G. R. B., Nuñez, G. B., Atoche, A. C., & Aguilar, J. O. (2019). Plant Microbial Fuel Cells–Based Energy Harvester System for Self-powered IoT Applications. Sensors (Basel, Switzerland), 19(6). https://doi.org/10.3390/S19061378

Fadzli, F. S., Bhawani, S. A., & Adam Mohammad, R. E. (2021). Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/4570388

Fang, Z., Song, H. L., Cang, N., & Li, X. N. (2015). Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosensors and Bioelectronics, 68, 135–141. https://doi.org/10.1016/j.bios.2014.12.047

Garbini, G. L., Barra Caracciolo, A., & Grenni, P. (2023). Electroactive Bacteria in Natural Ecosystems and Their Applications in Microbial Fuel Cells for Bioremediation: A Review. Microorganisms, 11(5), 1255. https://doi.org/10.3390/microorganisms11051255

García, E., Núñez, P. J., Caminero, M. A., Chacón, J. M., & Kamarthi, S. (2022). Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Composites Part B: Engineering, 235, 109766. https://doi.org/10.1016/J.COMPOSITESB.2022.109766

Greenman, J., Gajda, I., & Ieropoulos, I. (2019). Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines. In Sustainable Energy and Fuels (Vol. 3, Issue 10, pp. 2546–2560). Royal Society of Chemistry. https://doi.org/10.1039/c9se00354a

Gregory, N. (2022). Measuring the Electrical Properties of 3D Printed Plastics in the W-Band. Electrical Engineering Undergraduate Honors Theses. https://scholarworks.uark.edu/eleguht/85

Halpenny, M. (2021). Workshop on Open-Source Microbial Fuel Cells.

Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/J.BIORTECH.2009.12.124

Jayanth, N., Senthil, P., & Mallikarjuna, B. (2022). Experimental investigation on the application of FDM 3D printed conductive ABS-CB composite in EMI shielding. Radiation Physics and Chemistry, 198, 110263. https://doi.org/10.1016/J.RADPHYSCHEM.2022.110263

Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 110, 402–414. https://doi.org/10.1016/j.rser.2019.05.016

Karakaya, F., Yilmaz, M., & Ince Aka, E. (2021). Examination of Pre-Service Science Teachers’ Conceptual Perceptions and Misconceptions about Photosynthesis. Pedagogical Research, 6(4), em0104. https://doi.org/10.29333/pr/11216

Krishnan, S. K., Kandasamy, S., & Subbiah, K. (2021). Chapter 32 - Fabrication of microbial fuel cells with nanoelectrodes for enhanced bioenergy production. In R. P. Kumar & B. Bharathiraja (Eds.), Nanomaterials (pp. 677–687). Academic Press. https://doi.org/10.1016/B978-0-12-822401-4.00003-9

Maddalwar, S., Kumar Nayak, K., Kumar, M., & Singh, L. (2021). Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresource Technology, 341, 125772. https://doi.org/10.1016/J.BIORTECH.2021.125772

Mazloum, A., Kováčik, J., Zagrai, A., & Sevostianov, I. (2020). Copper-graphite composite: Shear modulus, electrical resistivity, and cross-property connections. International Journal of Engineering Science, 149, 103232. https://doi.org/10.1016/J.IJENGSCI.2020.103232

Nidheesh, P. V, Ganiyu, S. O., Kuppam, C., Mousset, E., Samsudeen, N., Olvera-Vargas, H., & Kumar, G. (2022). Bioelectrochemical cells as a green energy source for electrochemical treatment of water and wastewater. Journal of Water Process Engineering, 50, 103232. https://doi.org/10.1016/j.jwpe.2022.103232

Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81–89. https://doi.org/10.1016/J.RSER.2017.03.064

Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., Lehl, H. K., Thung, W. E., & Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 224, 265–275. https://doi.org/10.1016/J.BIORTECH.2016.10.079

Pamintuan, K. R. S., Ancheta, A. J. G., & Robles, S. M. T. (2020). Stacking efficiency of terrestrial Plant-Microbial Fuel Cells growing Ocimum basilicum and Origanum vulgare. E3S Web of Conferences, 181, 01004. https://doi.org/10.1051/E3SCONF/202018101004

Pamintuan, K. R. S., Gonzales, A. J. S., Estefanio, B. M. M., & Bartolo, B. L. S. (2018). Simultaneous phytoremediation of Ni2+ and bioelectricity generation in a plant-microbial fuel cell assembly using water hyacinth (Eichhornia crassipes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012093

Pamintuan, K. R. S., Reyes, C. S. A., & Lat, D. K. O. (2020). Compartmentalization and polarization studies of a Plant-Microbial Fuel Cell assembly with Cynodon dactylon. E3S Web of Conferences, 181, 01007. https://doi.org/10.1051/E3SCONF/202018101007

Pamintuan, K. R. S., Virata, M. M. D., & Yu, M. F. C. (2019). Simultaneous phytoremediation of Cu2+ and bioelectricity generation in a plant-microbial fuel cell assembly growing Azolla pinnata and Lemna minor. IOP Conference Series: Earth and Environmental Science, 344(1). https://doi.org/10.1088/1755-1315/344/1/012021

Rawa, M., Al-Turki, Y., Sindi, H., Ćalasan, M., Ali, Z. M., & Abdel Aleem, S. H. E. (2023). Current-voltage curves of planar heterojunction perovskite solar cells – Novel expressions based on Lambert W function and Special Trans Function Theory. Journal of Advanced Research, 44, 91–108. https://doi.org/10.1016/j.jare.2022.03.017

Roy, H., Rahman, T. U., Tasnim, N., Arju, J., Rafid, Md. M., Islam, Md. R., Pervez, Md. N., Cai, Y., Naddeo, V., & Islam, Md. S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490

Santana, J., Espinoza-Andaluz, M., Li, T., & Andersson, M. (2020). A Detailed Analysis of Internal Resistance of a PEFC Comparing High and Low Humidification of the Reactant Gases. Frontiers in Energy Research, 8, 217. https://doi.org/10.3389/FENRG.2020.00217/BIBTEX

Sharma, A., & Chhabra, M. (2021). Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresource Technology, 338. https://doi.org/10.1016/J.BIORTECH.2021.125499

Sharma, M., Das, P. P., Sood, T., Chakraborty, A., & Purkait, M. K. (2022). Reduced graphene oxide incorporated polyvinylidene fluoride/cellulose acetate proton exchange membrane for energy extraction using microbial fuel cells. Journal of Electroanalytical Chemistry, 907. https://doi.org/10.1016/j.jelechem.2021.115890

Simeon, M. I., Asoiro, F. U., Aliyu, M., Raji, O. A., & Freitag, R. (2020). Polarization and power density trends of a soil-based microbial fuel cell treated with human urine. International Journal of Energy Research, 44(7), 5968–5976. https://doi.org/10.1002/er.5391

Song, H., Zhang, S., Long, X., Yang, X., Li, H., & Xiang, W. (2017). Optimization of bioelectricity generation in constructedwetland-coupled microbial fuel cell systems. Water (Switzerland), 9(3). https://doi.org/10.3390/w9030185

Theodosiou, P., Greenman, J., & Ieropoulos, I. (2019). Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 44(9), 4450–4462. https://doi.org/10.1016/J.IJHYDENE.2018.12.163

Tirado-Garcia, I., Garcia-Gonzalez, D., Garzon-Hernandez, S., Rusinek, A., Robles, G., Martinez-Tarifa, J. M., & Arias, A. (2021). Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Composite Structures, 265. https://doi.org/10.1016/J.COMPSTRUCT.2021.113744

Tornheim, A., & O’Hanlon, D. C. (2020). What do Coulombic Efficiency and Capacity Retention Truly Measure? A Deep Dive into Cyclable Lithium Inventory, Limitation Type, and Redox Side Reactions. Journal of The Electrochemical Society, 167(11), 110520. https://doi.org/10.1149/1945-7111/AB9EE8

Wang, J., Song, X., Wang, Y., Bai, J., Bai, H., Yan, D., Cao, Y., Li, Y., Yu, Z., & Dong, G. (2017). Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology, 245, 372–378. https://doi.org/10.1016/J.BIORTECH.2017.08.191

Wang, Y., Chen, Y., Wen, Q., Zheng, H., Xu, H., & Qi, L. (2019). Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy, 189. https://doi.org/10.1016/j.energy.2019.116342

Xu, P., Xiao, E. R., Xu, D., Zhou, Y., He, F., Liu, B. Y., Zeng, L., & Wu, Z. Bin. (2017). Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants. PLOS ONE, 12(2), e0172757. https://doi.org/10.1371/JOURNAL.PONE.0172757

Yang, Y., Zhao, Y., Tang, C., Xu, L., Morgan, D., & Liu, R. (2020). Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chemical Engineering Journal, 392. https://doi.org/10.1016/J.CEJ.2019.123708




Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)

Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.