skip to main content

Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes

1School of Chemical, Biological. and Materials Engineering and Sciences, Mapua University, Manila, Philippines

2Center for Renewable Bioenergy Research, Mapua University, Manila, Philippines

Received: 26 Mar 2023; Revised: 21 Jul 2023; Accepted: 8 Aug 2023; Available online: 29 Aug 2023; Published: 1 Sep 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Plant-Microbial Fuel Cells (PMFCs) are a sustainable derivative of fuel cells that capitalizes on plant rhizodeposition to generate bioelectricity. In this study, the performance of the novel 3D-printed aquatic PMFC assembly with Eichhornia crassipes as the model plant was investigated. The design made use of 1.75 mm Protopasta Conductive Polylactic Acid (PLA) for the electrodes and 1.75 mm CCTREE Polyethylene Terephthalate Glycol (PETG) filaments for the separator. Three systems were prepared with three replicates each: PMFCs with the original design dimensions (System A), PMFCs with cathode-limited surface area variations (System B), and PMFCs with anode-limited surface area variations (System C). The maximum power density obtained by design was 82.54 µW/m2, while the average for each system is 26.99 µW/m2, 36.24 µW/m2, and 6.81 µW/m2, respectively. The effect of variations on electrode surface area ratio was also examined, and the results suggest that the design benefits from increasing the cathode surface area up to a cathode-anode surface area ratio of 2:1. This suggests that the cathode is the crucial component for this design due to it facilitating the rate-limiting step. Plant health was also found to be a contributing factor to PMFC performance, thereby suggesting that PMFCs are an interplay of several factors not limited to electrode surface area alone. The performance of the novel PMFC did not achieve those obtained from existing studies. Nevertheless, the result of this study indicates that 3D-printing technology is a possible retrofit for PMFC technology and can be utilized for scale-up and power amplification.

Fulltext View|Download
Keywords: 3D-printing; aquatic PMFC; performance evaluation; electrodes; electrochemistry

Article Metrics:

  1. Agrahari, R., Bayar, B., Abubackar, H. N., Giri, B. S., Rene, E. R., & Rani, R. (2022). Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere, 290, 133184. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133184
  2. Atawa, B., Maneval, L., Alcouffe, P., Sudre, G., David, L., Sintes-Zydowicz, N., Beyou, E., & Serghei, A. (2022). In-situ coupled mechanical/electrical investigations on conductive TPU/CB composites: Impact of thermo-mechanically induced structural reorganizations of soft and hard TPU domains on the coupled electro-mechanical properties. Polymer, 256, 125147. https://doi.org/10.1016/J.POLYMER.2022.125147
  3. Begcy, K., Wang, M., Chen, L. L., Wen, J., Qin, F., Shen, Y., Li, Z., Qu, H., Feng, J., Kong, L., Teri, G., Luan, H., & Cao, Z. (2022). Shade Delayed Flowering Phenology and Decreased Reproductive Growth of Medicago sativa L. 13, 835380. https://doi.org/10.3389/fpls.2022.835380
  4. Bhandari, S., Lopez-Anido, R. A., & Gardner, D. J. (2019). Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 30. https://doi.org/10.1016/J.ADDMA.2019.100922
  5. Chang, H. C., Sun, T., Sultana, N., Lim, M. M., Khan, T. H., & Ismail, A. F. (2016). Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Materials Science and Engineering: C, 61, 396–410. https://doi.org/10.1016/J.MSEC.2015.12.074
  6. Dave, K., Darji, P., Gandhi, F., Singh, S., & Jadav, D. (2020). Bioelectrochemical Sysytem: An Eco-Friendly Approach To Generate Electricity Utilizing Plants And Microorganisms. https://doi.org/10.21203/rs.3.rs-64793/v1
  7. De La Rosa, E. O., Castillo, J. V., Campos, M. C., Pool, G. R. B., Nuñez, G. B., Atoche, A. C., & Aguilar, J. O. (2019). Plant Microbial Fuel Cells–Based Energy Harvester System for Self-powered IoT Applications. Sensors (Basel, Switzerland), 19(6). https://doi.org/10.3390/S19061378
  8. Fadzli, F. S., Bhawani, S. A., & Adam Mohammad, R. E. (2021). Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/4570388
  9. Fang, Z., Song, H. L., Cang, N., & Li, X. N. (2015). Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosensors and Bioelectronics, 68, 135–141. https://doi.org/10.1016/j.bios.2014.12.047
  10. Garbini, G. L., Barra Caracciolo, A., & Grenni, P. (2023). Electroactive Bacteria in Natural Ecosystems and Their Applications in Microbial Fuel Cells for Bioremediation: A Review. Microorganisms, 11(5), 1255. https://doi.org/10.3390/microorganisms11051255
  11. García, E., Núñez, P. J., Caminero, M. A., Chacón, J. M., & Kamarthi, S. (2022). Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Composites Part B: Engineering, 235, 109766. https://doi.org/10.1016/J.COMPOSITESB.2022.109766
  12. Greenman, J., Gajda, I., & Ieropoulos, I. (2019). Microbial fuel cells (MFC) and microalgae; Photo microbial fuel cell (PMFC) as complete recycling machines. In Sustainable Energy and Fuels (Vol. 3, Issue 10, pp. 2546–2560). Royal Society of Chemistry. https://doi.org/10.1039/c9se00354a
  13. Gregory, N. (2022). Measuring the Electrical Properties of 3D Printed Plastics in the W-Band. Electrical Engineering Undergraduate Honors Theses. https://scholarworks.uark.edu/eleguht/85
  14. Halpenny, M. (2021). Workshop on Open-Source Microbial Fuel Cells
  15. Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/J.BIORTECH.2009.12.124
  16. Jayanth, N., Senthil, P., & Mallikarjuna, B. (2022). Experimental investigation on the application of FDM 3D printed conductive ABS-CB composite in EMI shielding. Radiation Physics and Chemistry, 198, 110263. https://doi.org/10.1016/J.RADPHYSCHEM.2022.110263
  17. Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 110, 402–414. https://doi.org/10.1016/j.rser.2019.05.016
  18. Karakaya, F., Yilmaz, M., & Ince Aka, E. (2021). Examination of Pre-Service Science Teachers’ Conceptual Perceptions and Misconceptions about Photosynthesis. Pedagogical Research, 6(4), em0104. https://doi.org/10.29333/pr/11216
  19. Krishnan, S. K., Kandasamy, S., & Subbiah, K. (2021). Chapter 32 - Fabrication of microbial fuel cells with nanoelectrodes for enhanced bioenergy production. In R. P. Kumar & B. Bharathiraja (Eds.), Nanomaterials (pp. 677–687). Academic Press. https://doi.org/10.1016/B978-0-12-822401-4.00003-9
  20. Maddalwar, S., Kumar Nayak, K., Kumar, M., & Singh, L. (2021). Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresource Technology, 341, 125772. https://doi.org/10.1016/J.BIORTECH.2021.125772
  21. Mazloum, A., Kováčik, J., Zagrai, A., & Sevostianov, I. (2020). Copper-graphite composite: Shear modulus, electrical resistivity, and cross-property connections. International Journal of Engineering Science, 149, 103232. https://doi.org/10.1016/J.IJENGSCI.2020.103232
  22. Nidheesh, P. V, Ganiyu, S. O., Kuppam, C., Mousset, E., Samsudeen, N., Olvera-Vargas, H., & Kumar, G. (2022). Bioelectrochemical cells as a green energy source for electrochemical treatment of water and wastewater. Journal of Water Process Engineering, 50, 103232. https://doi.org/10.1016/j.jwpe.2022.103232
  23. Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81–89. https://doi.org/10.1016/J.RSER.2017.03.064
  24. Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., Lehl, H. K., Thung, W. E., & Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 224, 265–275. https://doi.org/10.1016/J.BIORTECH.2016.10.079
  25. Pamintuan, K. R. S., Ancheta, A. J. G., & Robles, S. M. T. (2020). Stacking efficiency of terrestrial Plant-Microbial Fuel Cells growing Ocimum basilicum and Origanum vulgare. E3S Web of Conferences, 181, 01004. https://doi.org/10.1051/E3SCONF/202018101004
  26. Pamintuan, K. R. S., Gonzales, A. J. S., Estefanio, B. M. M., & Bartolo, B. L. S. (2018). Simultaneous phytoremediation of Ni2+ and bioelectricity generation in a plant-microbial fuel cell assembly using water hyacinth (Eichhornia crassipes). IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012093
  27. Pamintuan, K. R. S., Reyes, C. S. A., & Lat, D. K. O. (2020). Compartmentalization and polarization studies of a Plant-Microbial Fuel Cell assembly with Cynodon dactylon. E3S Web of Conferences, 181, 01007. https://doi.org/10.1051/E3SCONF/202018101007
  28. Pamintuan, K. R. S., Virata, M. M. D., & Yu, M. F. C. (2019). Simultaneous phytoremediation of Cu2+ and bioelectricity generation in a plant-microbial fuel cell assembly growing Azolla pinnata and Lemna minor. IOP Conference Series: Earth and Environmental Science, 344(1). https://doi.org/10.1088/1755-1315/344/1/012021
  29. Rawa, M., Al-Turki, Y., Sindi, H., Ćalasan, M., Ali, Z. M., & Abdel Aleem, S. H. E. (2023). Current-voltage curves of planar heterojunction perovskite solar cells – Novel expressions based on Lambert W function and Special Trans Function Theory. Journal of Advanced Research, 44, 91–108. https://doi.org/10.1016/j.jare.2022.03.017
  30. Roy, H., Rahman, T. U., Tasnim, N., Arju, J., Rafid, Md. M., Islam, Md. R., Pervez, Md. N., Cai, Y., Naddeo, V., & Islam, Md. S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490
  31. Santana, J., Espinoza-Andaluz, M., Li, T., & Andersson, M. (2020). A Detailed Analysis of Internal Resistance of a PEFC Comparing High and Low Humidification of the Reactant Gases. Frontiers in Energy Research, 8, 217. https://doi.org/10.3389/FENRG.2020.00217/BIBTEX
  32. Sharma, A., & Chhabra, M. (2021). Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. Bioresource Technology, 338. https://doi.org/10.1016/J.BIORTECH.2021.125499
  33. Sharma, M., Das, P. P., Sood, T., Chakraborty, A., & Purkait, M. K. (2022). Reduced graphene oxide incorporated polyvinylidene fluoride/cellulose acetate proton exchange membrane for energy extraction using microbial fuel cells. Journal of Electroanalytical Chemistry, 907. https://doi.org/10.1016/j.jelechem.2021.115890
  34. Simeon, M. I., Asoiro, F. U., Aliyu, M., Raji, O. A., & Freitag, R. (2020). Polarization and power density trends of a soil-based microbial fuel cell treated with human urine. International Journal of Energy Research, 44(7), 5968–5976. https://doi.org/10.1002/er.5391
  35. Song, H., Zhang, S., Long, X., Yang, X., Li, H., & Xiang, W. (2017). Optimization of bioelectricity generation in constructedwetland-coupled microbial fuel cell systems. Water (Switzerland), 9(3). https://doi.org/10.3390/w9030185
  36. Theodosiou, P., Greenman, J., & Ieropoulos, I. (2019). Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 44(9), 4450–4462. https://doi.org/10.1016/J.IJHYDENE.2018.12.163
  37. Tirado-Garcia, I., Garcia-Gonzalez, D., Garzon-Hernandez, S., Rusinek, A., Robles, G., Martinez-Tarifa, J. M., & Arias, A. (2021). Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Composite Structures, 265. https://doi.org/10.1016/J.COMPSTRUCT.2021.113744
  38. Tornheim, A., & O’Hanlon, D. C. (2020). What do Coulombic Efficiency and Capacity Retention Truly Measure? A Deep Dive into Cyclable Lithium Inventory, Limitation Type, and Redox Side Reactions. Journal of The Electrochemical Society, 167(11), 110520. https://doi.org/10.1149/1945-7111/AB9EE8
  39. Wang, J., Song, X., Wang, Y., Bai, J., Bai, H., Yan, D., Cao, Y., Li, Y., Yu, Z., & Dong, G. (2017). Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology, 245, 372–378. https://doi.org/10.1016/J.BIORTECH.2017.08.191
  40. Wang, Y., Chen, Y., Wen, Q., Zheng, H., Xu, H., & Qi, L. (2019). Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy, 189. https://doi.org/10.1016/j.energy.2019.116342
  41. Xu, P., Xiao, E. R., Xu, D., Zhou, Y., He, F., Liu, B. Y., Zeng, L., & Wu, Z. Bin. (2017). Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants. PLOS ONE, 12(2), e0172757. https://doi.org/10.1371/JOURNAL.PONE.0172757
  42. Yang, Y., Zhao, Y., Tang, C., Xu, L., Morgan, D., & Liu, R. (2020). Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation. Chemical Engineering Journal, 392. https://doi.org/10.1016/J.CEJ.2019.123708

Last update:

  1. Development of a 3D-printed spongy electrode design for microbial fuel cell (MFC) using gyroid lattice

    Kristopher Ray Simbulan Pamintuan, Harold Octavo Manga, Aprilyn Balmes. International Journal of Renewable Energy Development, 2024. doi: 10.61435/ijred.2024.58120
  2. Enhancing microbial fuel cell performance with carbon powder electrode modifications for low-power sensors modules

    Mohammed Adel Al-badani, Peng Lean Chong, Heng Siong Lim. International Journal of Renewable Energy Development, 13 (1), 2024. doi: 10.14710/ijred.2024.58977
  3. Advances in amelioration of air pollution using plants and associated microbes: An outlook on phytoremediation and other plant-based technologies

    Anina James, Eldon R. Rene, Abubakar M. Bilyaminu, Padmanaban Velayudhaperumal Chellam. Chemosphere, 358 , 2024. doi: 10.1016/j.chemosphere.2024.142182

Last update: 2025-01-14 04:13:04

No citation recorded.