skip to main content

The feed-in tariff (FIT) policy to improve renewable energy utilization: An analysis of FIT implementation in ASEAN countries from renewable energy growth, decarbonization, and investment perspective

1PT. PLN (Persero) Puslitbang Ketenagalistrikan (Research Institute), Jl. Duren Tiga Raya No.102, Jakarta 12760, Indonesia

2Department of Mechanical and Industrial Engineering Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia

3Center of Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281, Indonesia

4 Faculty of Law, Gadjah Mada University, Jl. Sosio Yustisia No. 1, Bulaksumur, Kab. Sleman, D.I. Yogyakarta 55281, Indonesia

5 Center of Advanced Manufacturing and Structural Engineering, Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia

View all affiliations
Received: 19 Jun 2023; Revised: 20 Jul 2023; Accepted: 1 Aug 2023; Available online: 5 Aug 2023; Published: 1 Sep 2023.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The FIT policy are widely adopted in the world to promote the utilization of renewable energy technology (RET). Tariff rates, tariff regression mechanisms, contract term, and quota constraints are all components of the FIT policy. This policy has also been adopted by Association of Southeast Asian Nations or ASEAN countries to optimize their renewable energy (RE) potential. This paper examines the utilization of RET in power generation under the FIT policy from the perspective of the growth of renewable energy, environment, and investment which applied in five major ASEAN countries in term of the biggest generation capacity, such as: Indonesia Vietnam, Malaysia, Thailand, and the Philippines. This study shows that the FIT has been successful in accelerating renewable energy growth compared to pre-FIT, where annual RE capacity growth was 7.52% in Thailand (2007-2021), 16.38% in Vietnam (2011-2021), 4.56% in Indonesia (2012-2021) 2021), 9.11% in Malaysia (2012-2021), and 5.21% in the Philippines (2012-2021). FIT also managed to keep CO2/kWh emissions production stable in Vietnam, Malaysia, and Thailand while increasing RE production in their power systems. Otherwise, due to the low utilization of RET in Indonesia and the Philippines, CO2 emissions in them has increased significantly, 6.67% per year at Indonesia, and 15.25% per year at the Philippines after the introduction of the FIT. Generally, FIT has succeeded in increasing the value of international funding investments in RE sector in Indonesia, Vietnam, Malaysia, Thailand, and the Philippines
Fulltext View|Download
Keywords: Renewable energy; Renewable energy policy; Feed-in Tariff; Renewable energy growth; ASEAN

Article Metrics:

  1. ACE. (2023). ASEAN Renewable Energy Regional Approach Strategic Report. http://go.aseanenergy.org/PB04230502
  2. ACE, & CREEI. (2018). ASEAN Feed-In-Tariff (FIT) Mechanism Report (Issue June)
  3. Aldersey-Williams, J., & Rubert, T. (2019). Levelised cost of energy – A theoretical justification and critical assessment. Energy Policy, 124(October 2018), 169–179. https://doi.org/10.1016/j.enpol.2018.10.004
  4. Alhusni, H., Satria, T., Perdana, P., Purwanto, E. H., & Setyawan, H. (2023). Geothermal Business Outlook in Indonesia. 48th Workshop on Geothermal Reservoir Engineering Stanford University, 2021, 1–12. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2023/Habibi.pdf
  5. Alishahi, E., Moghaddam, M. P., & Sheikh-El-Eslami, M. K. (2012). A system dynamics approach for investigating impacts of incentive mechanisms on wind power investment. Renewable Energy, 37(1), 310–317. https://doi.org/10.1016/j.renene.2011.06.026
  6. Alizamir, S., De Véricourt, F., & Sun, P. (2016). Efficient feed-in-tariff policies for renewable energy technologies. Operations Research, 64(1), 52–66. https://doi.org/10.1287/opre.2015.1460
  7. ASEAN Energy. (2023). Statistics Access official and comprehensive ASEAN energy statistic. https://aeds.aseanenergy.org/statistics/
  8. Asean Feed-in-Tariff (FiT) Mechanism Report. (2018). In ASEAN Centre for Energy (ACE) and China Renewable Energy Engineering Institute (CREEI) (Issue June)
  9. Azhgaliyeva, D., & Mishra, R. (2022). Feed-in tariffs for financing renewable energy in Southeast Asia. Wiley Interdisciplinary Reviews: Energy and Environment, II(3). https://doi.org/10.1002/wene.425
  10. Bakhtyar, B., Sopian, K., Zaharim, A., Salleh, E., & Lim, C. H. (2013). Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines. Energy Policy, 60, 418–423. https://doi.org/10.1016/j.enpol.2013.05.034
  11. Bilgili, F., Koçak, E., & Bulut, Ü. (2016). The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renewable and Sustainable Energy Reviews, 54, 838–845. https://doi.org/10.1016/j.rser.2015.10.080
  12. Boly, M., & Sanou, A. (2022). Biofuels and food security: evidence from Indonesia and Mexico. Energy Policy, 163(January), 112834. https://doi.org/10.1016/j.enpol.2022.112834
  13. Branker, K., Pathak, M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15(9), 4470–4482. https://doi.org/10.1016/j.rser.2011.07.104
  14. Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216–1226. https://doi.org/10.1109/5.940290
  15. Choobineh, M., Arab, A., Khodaei, A., & Paaso, A. (2022). Energy innovations through blockchain: Challenges, opportunities, and the road ahead. Electricity Journal, 35(1), 107059. https://doi.org/10.1016/j.tej.2021.107059
  16. del Río, P., & Gual, M. A. (2007). An integrated assessment of the feed-in tariff system in Spain. Energy Policy, 35(2), 994–1012. https://doi.org/10.1016/j.enpol.2006.01.014
  17. Diaz-rainey, I., Tulloch, D. J., Ahmed, I., & Mccarten, M. (2021). Asian Development Bank Institute (Issue 1217)
  18. Do, T. N., Burke, P. J., Nguyen, H. N., Overland, I., Suryadi, B., Swandaru, A., & Yurnaidi, Z. (2021). Vietnam’s solar and wind power success: Policy implications for the other ASEAN countries. Energy for Sustainable Development, 65, 1–11. https://doi.org/10.1016/j.esd.2021.09.002
  19. EPA. (2023a). Causes of climate change. https://www.epa.gov/climatechange-science/causes-climate-change
  20. EPA. (2023b). Global Greenhouse Gas Emissions Data. Pollution Engineering. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
  21. European Commission. (2023). Consequences of climate change. https://climate.ec.europa.eu/climate-change/consequences-climate-change_en
  22. Fahim, K. E., Silva, L. C. De, Hussain, F., & Shezan, S. A. (2023). An Evaluation of ASEAN Renewable Energy Path to Carbon Neutrality. Sustainability. 15(8), 6961; https://doi.org/10.3390/su15086961
  23. Fang, L., Honghua, X., Sicheng, W., Yonghui, Z., Yibo, W., Jia, Z., Hailing, L., & Shitong, S. (2016). National Survey Report of PV Power Applications in China 2016
  24. Fronda, A. D., Lazaro, V. S., Halcon, R. M., & Reyes, R. G. (2021). Geothermal Energy Development : The Philippines Country Update. World Geothermal Congress 2021, October, 1–8. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01065.pdf
  25. García-Alvarez, M. T., & Mariz-Pérez, R. M. (2012). Analysis of the Success of Feed-in Tariff for Renewable Energy Promotion Mechanism in the EU: Lessons from Germany and Spain. Procedia - Social and Behavioral Sciences, 65, 52–57. https://doi.org/10.1016/j.sbspro.2012.11.090
  26. Govindarajan, L., Faizal, M., Mohideen, B., Kamil, M., & Abdullah, B. (2023). Solar energy policies in southeast Asia towards low carbon emission : A review. Heliyon, 9(3), e14294. https://doi.org/10.1016/j.heliyon.2023.e14294
  27. Guild, J. (2019). Feed‐in‐tariffs and the politics of renewable energy in Indonesia and the.pdf. Asia & the Pacific Policy Studies, 6, 417–431. https://doi.org/10.1002/app5.288
  28. Haas, R., Panzer, C., Resch, G., Ragwitz, M., Reece, G., & Held, A. (2011). A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renewable and Sustainable Energy Reviews, 15(2), 1003–1034. https://doi.org/10.1016/j.rser.2010.11.015
  29. Hannah Ritchie, M. R. P. R. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data. https://ourworldindata.org/co2-and-greenhouse-gas-emission
  30. Hartono, D., Komarulzaman, A., Irawan, T., & Nugroho, A. (2020). Phasing out Energy Subsidies to Improve Energy Mix: A Dead End. Energies, 13, 2281. https://doi.org/10.3390/en13092281
  31. Hasan, B. M., & Wahjosudibjo, A. S. (2014). Feed-In Tariff f or Indonesia ’ s Geothermal Energy Development , Current Status and Challenges. Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, February 24-26, 2014. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Hasan.pdf
  32. HM Government Department for Business, 2016. Energy and Industrial Strategy. (2016). Electricity Generation Costs 2016. BEIS Electricity Generation Cost Report, November, 85. https://www.gov.uk/government/publications/beis-electricity-generation-costs-november-2016
  33. Hotchkiss, E., Bazilian, M., Toor, W., & Hay, K. (2022). Colorado clean energy policy landscape: A case study. The Electricity Journal, 35(4), 107107. https://doi.org/10.1016/j.tej.2022.107107
  34. Huenteler, J. (2014). International support for feed-in tariffs in developing countries - A review and analysis of proposed mechanisms. Renewable and Sustainable Energy Reviews, 39, 857–873. https://doi.org/10.1016/j.rser.2014.07.124
  35. IEA. (2023a). CO2 emissions from electricity and heat production by fuel, and share by fuel, 2000-2021. https://www.iea.org/data-and-statistics/charts/co2-emissions-from-electricity-and-heat-production-by-fuel-and-share-by-fuel-2000-2021
  36. IEA. (2023b). IEA data and statistics. https://doi.org/10.1016/b978-0-12-374970-3.00001-9
  37. Inglesi-Lotz, R., & Dogan, E. (2018). The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators. Renewable Energy, 123, 36–43. https://doi.org/10.1016/j.renene.2018.02.041
  38. IPCC. (2014). Technology-specific Cost and Performance Parameters. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf
  39. IRENA. (2017). Renewable Energy Outlook Thailand
  40. IRENA. (2022). Renewable Power Generation 2021. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021_Summary.pdf
  41. IRENA. (2023). Malaysia energy transition outlook. https://www.irena.org/Publications/2023/Mar/Malaysia-energy-transition-outlook
  42. IRENA & ACE. (2022). Renewable energy outlook for ASEAN towards a regional energy transition. In International Renewable, Energy Agency, Abu Dhabi; and ASEAN Centre for Energy, Jakarta. www.irena.org
  43. Jahangir, M. H., Mokhtari, R., & Mousavi, S. A. (2021). Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – A case study. Sustainable Energy Technologies and Assessments, 46(April). https://doi.org/10.1016/j.seta.2021.101220
  44. Junlakarn, S., Kittner, N., Tongsopit, S., & Saelim, S. (2021). A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam. Renewable and Sustainable Energy Reviews, 145(July 2020), 110820. https://doi.org/10.1016/j.rser.2021.110820
  45. Klopčič, A. L., Hojnik, J., & Bojnec, Š. (2022). What is the state of development of retail electricity markets in the EU? Electricity Journal, 35(3). https://doi.org/10.1016/j.tej.2022.107092
  46. Korolev, V. G. (2022). Development prospects of wind energy in the Russian energy complex. Electricity Journal, 35(3), 107094. https://doi.org/10.1016/j.tej.2022.107094
  47. Kozhageldi, B. Z., Tulenbayev, Z. S., Orynbayev, S., Kuttybaev, G., Abdlakhatova, N., & Minazhova, S. (2022). Development of integrated solutions for the decentralisation of electricity supply to power-hungry regions. The Electricity Journal, 35(4), 107108. https://doi.org/10.1016/j.tej.2022.107108
  48. Lagac, J. M. P., & Lagac, J. M. P. (2020). Evaluating the Feed-in Tariff Policy in the Philippines Evaluating the Feed-in Tariff Policy in the Philippines. https://ssrn.com/abstract=35204014
  49. Lau, H. C. (2023). Decarbonization of ASEAN ’ s power sector : A holistic approach. Energy Reports, 9, 676–702. https://doi.org/10.1016/j.egyr.2022.11.209
  50. Le, H. T., Sanseverino, E. R., Nguyen, D., Luisa, M., Silvestre, D., Favuzza, S., & Pham, M. (2022). Critical Assessment of Feed-In Tariffs and Solar Photovoltaic Development in Vietnam. Energies, 15(2), 556; https://doi.org/10.3390/en15020556
  51. Lesser, J. A., & Su, X. (2008). Design of an economically efficient feed-in tariff structure for renewable energy development. Energy Policy, 36(3), 981–990. https://doi.org/10.1016/j.enpol.2007.11.007
  52. Li, R., & Woo, C. K. (2022). How price responsive is commercial electricity demand in the US? Electricity Journal, 35(1), 107066. https://doi.org/10.1016/j.tej.2021.107066
  53. Lidula, N. W. A., Mithulananthan, N., Ongsakul, W., Widjaya, C., & Henson, R. (2007). ASEAN towards clean and sustainable energy: Potentials, utilization and barriers. Renewable Energy, 32(9), 1441–1452. https://doi.org/10.1016/j.renene.2006.07.007
  54. Lim, X. Le, Lam, W. H., & Hashim, R. (2015). Feasibility of marine renewable energy to the Feed-in Tariff system in Malaysia. Renewable and Sustainable Energy Reviews, 49, 708–719. https://doi.org/10.1016/j.rser.2015.04.074
  55. Liu, Y., & Noor, R. (2020). Asian Development Bank Institute (Issue 1196)
  56. Mamat, R., Sani, M. S. M., Khoerunnisa, F., & Kadarohman, A. (2019). Target and demand for renewable energy across 10 ASEAN countries by 2040. The Electricity Journal, 32(10), 106670. https://doi.org/10.1016/j.tej.2019.106670
  57. MEMR of Republic of Indonesia. (2023). Potensi Pengembangan Energi Panas Bumi di Indonesia. https://ebtke.esdm.go.id/lintas/id/investasi-ebtke/sektor-panas-bumi/potensi
  58. Menanteau, P., Finon, D., & Lamy, M. (2010). Prices versus quantities : choosing policies for promoting the development of renewable energy. Energy Policy. 31(2003), 799–812. https://doi.org/10.1016/S0301-4215(02)00133-7
  59. Miguel Mendonça. (2007). Feed-in Tariffs Accelerating the Deployment of Renewable Energy. 1st Ed. Routledge, London. https://doi.org/10.4324/9781849771313
  60. Renewable and Alternative Energy Development Plan 2018 - 2037, (2018). https://policy.asiapacificenergy.org/sites/default/files/Alternative Energy Development Plan 2018-2037 %28AEDP 2018%29%28TH%29.pdf
  61. Muhammad-Sukki, F. (2014). Feed-in tariff for solar photovoltaic: The rise of japan. Renewable Energy, 68, 636–643. https://doi.org/10.1016/j.renene.2014.03.012
  62. Muhammad-Sukki, Firdaus, Abu-Bakar, S. H., Munir, A. B., Mohd Yasin, S. H., Ramirez-Iniguez, R., McMeekin, S. G., Stewart, B. G., & Abdul Rahim, R. (2014). Progress of feed-in tariff in Malaysia: A year after. Energy Policy, 67, 618–625. https://doi.org/10.1016/j.enpol.2013.12.044
  63. NAS; The Royal Society. (2021). Climate change, evidence, & causes. https://doi.org/10.1016/b978-0-12-818564-3.09991-1
  64. Nguyen, P. A., Abbott, M., & Nguyen, T. L. T. (2019). The development and cost of renewable energy resources in Vietnam. Utilities Policy, 57(September 2017), 59–66. https://doi.org/10.1016/j.jup.2019.01.009
  65. Nissen, U., & Harfst, N. (2019). Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity. Energy, 171, 1009–1016. https://doi.org/10.1016/j.energy.2019.01.093
  66. ourworldindata. (2023). Carbon intensity of electricity, 2000 to 2021. https://ourworldindata.org/grapher/carbon-intensity-electricity?tab=chart&facet=entity&uniformYAxis=0&country=IDN~VNM~MYS~THA~PHL
  67. Ouyang, X. (2014). Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China. Energy Policy, 70, 64–73. https://doi.org/10.1016/j.enpol.2014.03.030
  68. Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1). https://doi.org/10.1080/23311916.2016.1167990
  69. Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037
  70. Energy Regulatory Commision, Resolution-No-06-Series-of-2020, (2020)
  71. Government Regulation of the Republic of Indonesia Number 79 of 2014 On National Energy Policy The President of the Republic of Indonesia, (2014). https://jdih.esdm.go.id/index.php/web/result/1777/detail
  72. President of Republic Indonesia. (2022). Percepatan Pengembangan Energi Terbarukan Untuk Penyediaan Tenaga Listrik (Issue 135413). https://peraturan.bpk.go.id/Home/Details/225308/perpres-no-112-tahun-2022
  73. National Energy Policy 2022-2040, (2022). https://www.epu.gov.my/sites/default/files/2022-09/National_Energy_Policy_2022-2040.pdf
  74. Decision 13/2020/QD-TTg on Mechanism for Encouragement ofthe Development ofSolar Power in Vietnam, (2020). https://policy.asiapacificenergy.org/sites/default/files/Decision_13_2020_on_Solar-FiT-2_EN.pdf
  75. PT. PLN (Persero). (2021). Diseminasi RUPTL 2021-2030
  76. Purwanto, E. H., Resources, M., & Suwarno, E. (2019). Geothermal Drilling in Indonesia : a Review of Drilling Implementation , Evaluation of Well Cost and Well Capacity,. The 6th Indonesia International Geothermal Convention & Exhibition (IIGCE) 2018, September 2018
  77. Qureshi, S., Phan-van, L., Dan, L., & Nguyen-duc, T. (2023). Rooftop solar policies feasibility assessment model : Vietnam case study. Energy Policy, 177(April), 113577. https://doi.org/10.1016/j.enpol.2023.113577
  78. Ragwitz, M., & Huber, C. (2005). Feed-In Systems in Germany and Spain and a comparison. Fraunhofer Institute Systems and Innovation Research, 1–27
  79. Rahmadi, A., Hanifah, H., & Kuntjara, H. (2017). Renewable Energy in ASEAN: An Investment Guidebook
  80. Rahmanta, M. A., Tanbar, F., & Syamsuddin, A. (2022). SWOT Analyst of Feed-in Tariff Policy in Indonesia. International Seminar on Intelligent Technology and Its Applications (ISITIA), 449–454. https://doi.org/doi: 10.1109/ISITIA56226.2022.9855318
  81. Energy Regulatory Commision, Resolution no. 16 series of 2010, (2010)
  82. Energy Regulatory Commision, Resolution No. 16 series of 2012, (2012)
  83. National Renewable Energy Program (NREP) 2020-2040, (2020). https://www.doe.gov.ph/sites/default/files/pdf/announcements/nrep_2020-2040.pdf?withshield=1#:~:text=Consistent with the objectives of,GHG) in the coming years
  84. Richter, A. (2023). ThinkGeoEnergy’s Top 10 Geothermal Countries 2022 – Power Generation Capacity (MW). https://www.thinkgeoenergy.com/thinkgeoenergys-top-10-geothermal-countries-2022-power-generation-capacity-mw/
  85. Ritchie, H. (2022). CO₂ emissions dataset: Our sources and methods. Our World in Data
  86. Rosado, H. R. and M. R. and P. (2022). Energy. Published Online at OurWorldInData.Org. https://ourworldindata.org/energy/country/vietnam
  87. S&P Global. (2022). Supporting the development of ASEAN economies: Understanding the strong power demand growth in the region. https://www.spglobal.com/esg/s1/research-analysis/supporting-the-development-of-asean-economies-understanding.html#:~:text=Current power demand growth rate,growing markets in the world
  88. Safrina, R., & Utama, N. A. (2023). ASEAN energy transition pathway toward the 2030 agenda. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.14101
  89. Schnaars, P. (2022). The real substitution effect of renewable electricity: An empirical analysis for Germany. Electricity Journal, 35(1), 107074. https://doi.org/10.1016/j.tej.2021.107074
  90. Setiawan, H. (2016). Geothermal Energy Development in Indonesia : Progress , Challenges and Geothermal Energy Development in Indonesia : Progress , Challenges and Prospect. Advanced Science Engineering Information Technology, February. https://doi.org/10.18517/ijaseit.4.4.405
  91. Shahid, I. A., Ullah, K., Miller, C. A., Dawood, M., & Ahmed, M. I. (2022). Rooftop solar adoption among populations and markets outside the US and Europe–A case from Pakistan. The Electricity Journal, 35(3), 107090.https:/doi.org/10.1016/j.tej.2022.107090
  92. Shukla, A. K., Sudhakar, K., Baredar, P., & Mamat, R. (2017). BIPV in Southeast Asian countries – opportunities and challenges. Reinforced Plastics, 21(00), 25–32. https://doi.org/10.1016/j.ref.2017.07.001
  93. Singh, P. P., & Singh, S. (2010). Realistic generation cost of solar photovoltaic electricity. Renewable Energy, 35(3), 563–569. https://doi.org/10.1016/j.renene.2009.07.020
  94. Sreenath, S., Mohd, A., Yenita, N., & Sudhakar, K. (2022). A decade of solar PV deployment in ASEAN : Policy landscape and recommendations. Energy Reports, 8, 460–469. https://doi.org/10.1016/j.egyr.2022.05.219
  95. Sun, P. (2015). A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry. Renewable Energy, 74, 255–262. https://doi.org/10.1016/j.renene.2014.08.027
  96. Supriyanto, E., Sentanuhady, J., Hasan, W. H., & Nugraha, A. D. (2022). Policy and Strategies of Tariff Incentives Related to Renewable Energy : Comparison between Indonesia and Other Developing and Developed Countries. Sustainability, 14. https://www.mdpi.com/2071-1050/14/20/13442
  97. Thanh, L., Ratnasiri, S., Wagner, L., & The, D. (2023). Solar adoption and the decisive role of the feed-in tariff policy. Economics Letters, 227, 111129. https://doi.org/10.1016/j.econlet.2023.111129
  98. Approval of the Revised National Power Development Master Plan for the 2011-2020 Period with the Vision to 2030, (2016). https://policy.asiapacificenergy.org/sites/default/files/PDP 7 revised Decision 428-QD-TTg dated 18 March 2016-ENG.pdf
  99. On the Support mechanisms for the Development of Solar Power Projects in Vietnam, The Vietnamese Priminister 1 (2017). http://vanban.chinhphu.vn/portal/page/portal/chinhphu/hethongvanban?class_id=1&_page=1&mode=detail&document_id=189336
  100. The World Bank. (2018). Vietnam : Achieving 12 GW of Solar PV Deployment by 2030 An Action Plan (Issue October). https://documents1.worldbank.org/curated/ar/225381584425186495/pdf/Vietnam-Achieving-12-GW-of-Solar-PV-Deployment-by-2030-An-Action-Plan.pdf
  101. Theglobal economy. (2022). Geothermal electricity capacity - Country rankings. https://www.theglobaleconomy.com/rankings/geothermal_electricity_capacity/
  102. Tolstyakova, O. V., & Batyrova, N. T. (2022). Methods of optimising tariff regulation in the electric power industry. Electricity Journal, 35(2), 107083. https://doi.org/10.1016/j.tej.2022.107083
  103. Tongsopit, S. (2013). An assessment of Thailand’s feed-in tariff program. Renewable Energy, 60, 439–445. https://doi.org/10.1016/j.renene.2013.05.036
  104. Tongsopit, Sopitsuda. (2015). Thailand’s feed-in tariff for residential rooftop solar PV systems: Progress so far. Energy for Sustainable Development, 29, 127–134. https://doi.org/10.1016/j.esd.2015.10.012
  105. Tongsopit, Sopitsuda, Moungchareon, S., Aksornkij, A., & Potisat, T. (2016). Business models and fi nancing options for a rapid scale-up of rooftop solar power systems in Thailand. Energy Policy, 1–11. https://doi.org/10.1016/j.enpol.2016.01.023
  106. Tu, Q., Mo, J., Betz, R., Cui, L., Fan, Y., & Liu, Y. (2020). Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate. Energy Policy, 144(July), 111681. https://doi.org/10.1016/j.enpol.2020.111681
  107. Tuan, A., Ni, S., Olcer, A. I., Chyuan, H., Chen, W., Tung, C., Thomas, S., Bandh, S. A., & Phuong, X. (2021). Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy : Opportunities, challenges , and policy implications. Energy Policy. 154. https://doi.org/10.1016/j.enpol.2021.112322
  108. UN. (2023). Cause and Effects of Climate Change. https://www.un.org/en/climatechange/science/causes-effects-climate-change
  109. UNESCAP. (2023a). SDG Gateway Asia Pasific, International support to clean energy and renewable energy. https://data.unescap.org/data-analysis/sdg-progress-report-2023
  110. UNESCAP. (2023b). SDG Gateway Asia Pasific, Renewable Energy Capacity. https://dataexplorer.unescap.org/vis?fs[0]=Indicators by Theme%2C1%7CEnergy%23ENERGY%23%7CRenewable electricity capacity%23RENEW_ENERGY_CAP%23&pg=0&fc=Indicators by Theme&bp=true&snb=1&vw=tb&df[ds]=ds-demo-design&df[id]=THEME_Dataflow&df[ag]=ESCAP&df[vs]=
  111. UNFCC. (2023). What is the Kyoto Protocol? https://unfccc.int/kyoto_protocol
  112. UNFCCC. (2022). Thailand’s 2 nd Updated Nationally Determined Contribution. https://unfccc.int/sites/default/files/NDC/2022-11/Thailand 2nd Updated NDC.pdf
  113. Kyoto Protocol to the United Nations Framework Convention on Climate Change, (1998)
  114. Vakulchuk, R., Chan, H.-Y., Kresnawan, M. R., & Merdekawati, M. (2020). Vietnam : Six Ways to Keep Up the Renewable Energy Investment Success. June. https://doi.org/http://dx.doi.org/10.13140/RG.2.2.11479.50081
  115. Vakulchuk, R., Overland, I., & Suryadi, B. (2023). ASEAN ’ s energy transition : how to attract more investment in renewable energy. Energy, Ecology and Environment, 8(1), 1–16. https://doi.org/10.1007/s40974-022-00261-6
  116. Vidinopoulos, A., Whale, J., & Fuentes Hutfilter, U. (2020). Assessing the technical potential of ASEAN countries to achieve 100% renewable energy supply. Sustainable Energy Technologies and Assessments, 42(April), 100878. https://doi.org/10.1016/j.seta.2020.100878
  117. Amending and supplementing some articles of Decision No. 11/2017/QD-TTg dated 11 April 2017 by the PM on mechanism for encouragement of the development of solar power projects in Vietnam, (2019). http://vepg.vn/wp-content/uploads/2019/02/PM-Decision-No.-022019QD-TTg_EN-unofficial-GIZ-translation.pdf
  118. Wahyudi, H., & Palupi, W. A. (2023). What is the Short-term and Long-term Relationship between Renewable Energy and Investment in Economic Growth? International Journal of Energy Economics and Policy, 13(3), 46–55. https://EconPapers.repec.org/RePEc:eco:journ2:2023-03-7
  119. Wang, X., & Barnett, A. (2019). The evolving value of photovoltaic module efficiency. Applied Sciences (Switzerland), 9(6). https://doi.org/10.3390/app9061227
  120. WHO. (2003). Climate change and human health Editors
  121. Wong, S. (2015). Recent advances of feed-in tariff in Malaysia. Renewable and Sustainable Energy Reviews, 41, 42–52. https://doi.org/10.1016/j.rser.2014.08.006
  122. World Bank. (2019). Going Global-Expanding Offshore Wind to Emerging Markets. Esmap
  123. World Bank. (2020). Global Photovoltaic Power Potential by Country. The World Bank. https://doi.org/10.1596/34102
  124. Xia, H., Lin, C., Liu, X., & Liu, Z. (2022). Urban underground space capacity demand forecasting based on sustainable concept: A review. Energy and Buildings, 255, 111656. https://doi.org/10.1016/j.enbuild.2021.111656
  125. Yan, Q. Y., Zhang, Q., Yang, L., & Wang, X. (2016). Overall review of feed-in tariff and renewable portfolio standard policy: A perspective of China. IOP Conference Series: Earth and Environmental Science, 40(1). https://doi.org/10.1088/1755-1315/40/1/012076
  126. Yang, C. J. (2010). Reconsidering solar grid parity. Energy Policy, 38(7), 3270–3273. https://doi.org/10.1016/j.enpol.2010.03.013
  127. Yao, Y., Xu, J. H., & Sun, D. Q. (2021). Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. Journal of Cleaner Production, 285, 124827. https://doi.org/10.1016/j.jclepro.2020.124827
  128. Ye, L. C., Rodrigues, J. F. D., & Lin, H. X. (2017). Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016. Applied Energy, 203, 496–505. https://doi.org/10.1016/j.apenergy.2017.06.037
  129. Yeap, J. (2022). Malaysia sets out national energy policy for next 20 years. https://www.pinsentmasons.com/out-law/news/malaysia-sets-out-national-energy-policy-for-next-20-years
  130. Yuliani, D. (2016). Is feed-in-tariff policy effective for increasing deployment of renewable energy in Indonesia ? in Douglas Arent and others (eds), The Political Economy of Clean Energy Transitions (Oxford, 2017; online edn, Oxford Academic. https://doi.org/10.1093/oso/9780198802242.003.0008
  131. Yun Lau, C., Kim Gan, C., & Hua Tan, P. (2014). Evaluation of Solar Photovoltaic Levelized Cost of Energy for Pv Grid Parity Analysis in Malaysia. International Journal of Renewable Energy Resources, 4, 28–34. https://ejournal.um.edu.my/index.php/IJRER/article/view/8032
  132. Zhang, H. L., Gerven, T. Van, Baeyens, J., & Degrève, J. (2020). Photovoltaics : Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs. The Scientific World Journal, 2014, Article ID 404913. https://doi.org/10.1155/2014/404913
  133. Zhang, M., & Zhang, Q. (2020). Grid parity analysis of distributed photovoltaic power generation in China. Energy, 206, 118165. https://doi.org/10.1016/j.energy.2020.118165

Last update:

No citation recorded.

Last update: 2025-01-21 02:39:13

No citation recorded.