skip to main content

Enhancing transient stability and dynamic response of wind-penetrated power systems through PSS and STATCOM cooperation

The Control, Analysis and Optimization of the Electro-Energetic Systems (CAOSEE) Laboratory, Tahri Mohamed University, Bechar, Algeria

Received: 15 Mar 2023; Revised: 10 Jun 2023; Accepted: 18 Jul 2023; Available online: 25 Jul 2023; Published: 1 Sep 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The large-scale integration of doubly-fed induction generator (DFIG) based wind power plants poses stability challenges for power system operation. This study investigates the transient stability and dynamic performance of a modified 3-machine, 9-bus Western System Coordinating Council (WSCC) system. The investigation was conducted by connecting the DFIG wind farm to the sixth bus via a low-impedance transmission line and installing power system stabilizers (PSSs) on all automatic voltage regulators (AVRs). A three-phase fault simulation was carried out to test the system, with and without power system stabilizers and a static synchronous compensator (STATCOM) device. Time-domain simulations demonstrate improved transient response with PSS-STATCOM control. A 50% reduction in settling time and 70% decrease in power angle undershoots at the slack bus are achieved following disturbances, even at minimum wind penetration levels. Load flow analysis shows the coordinated controllers maintain voltages within 0.5% of nominal at 60% wind penetration, while voltages at load buses can deviate up to 15% without control. Eigenvalue analysis indicates the PSS-STATCOM boosts damping ratios of critical oscillatory modes from nearly 0% to over 30% under high wind injection. Together, the present findings provide significant evidence that PSS and STATCOM cooperation enhances dynamic voltage regulation, angle stability, and damping across operating ranges, thereby maintaining secure operation in systems with high renewable integration.
Fulltext View|Download
Keywords: Doubly-Fed Induction Generator; Power System Stabilizer; Transient Stability; Power System Oscillations; Static Synchronous Compensator; Western System Coordinating Council

Article Metrics:

  1. Adebayo, I. G., & Sun, Y. (2017). New performance indices for voltage stability analysis in a power system. Energies, 10(12). https://doi.org/10.3390/en10122042
  2. Agarala, A., Bhat, S. S., Mitra, A., Zychma, D., & Sowa, P. (2022). Transient stability analysis of a multi-machine power system integrated with renewables. Energies, 15(13). https://doi.org/10.3390/en15134824
  3. Alsakati, A. A., Vaithilingam, C. A., Alnasseir, J., & Jagadeeshwaran, A. (2022). Simplex Search Method Driven Design for Transient Stability Enhancement in Wind Energy Integrated Power System Using Multi-Band PSS4C. IEEE Access., 14, 83913–83928. https://doi.org/10.1109/ACCESS.2021.3085976
  4. Asija, D., Choudekar, P., Soni, K. M., & Sinha, S. K. (2015). Power flow study and contingency status of WSCC 9 Bus test system using MATLAB. https://dx.doi.org/10.1109/RDCAPE.2015.7281420
  5. Avdakovic, S., Nuhanovic, A., Kusljugic, M., Becirovic, E., & Music, M. (2009). Identification of low frequency oscillations in power system. 2009 International Conference on Electrical and Electronics Engineering - ELECO 2009. https://doi.org/10.1109/ELECO.2009.5355325
  6. Bagchi, S., Goswami, S., Bhaduri, R., Ganguly, M., & Roy, A. (2016). Small signal stability analysis and comparison with DFIG incorporated system using FACTS devices. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) https://dx.doi.org/10.1109/ICPEICES.2016.7853294
  7. Balasubramanian, R., & Singh, R. (2011). Power system voltage stability analysis using ANN and continuation power flow methods. 2011 16th International Conference on Intelligent System Applications to Power Systems, 1–7. https://dx.doi.org/10.1109/ISAP.2011.6082192
  8. Cai, E., Dong, L., & Liao, X. (2021). A reduced-order model for representing the reactive power response of a doubly fed wind turbine during ZVRT. Journal of Renewable and Sustainable Energy, 13(5), 053310. https://doi.org/10.1063/5.0056451
  9. Carson W. Taylor, Neal J. Balu, Dominic Maratukulam. (1994). Power system voltage stability. McGraw-Hill, New York,
  10. Chandra, D. R., Kumari, M. S., Sydulu, M., Grimaccia, F., Mussetta, M., Leva, S., Duong, M.Q. (2014). Impact of SCIG, DFIG wind power plant on IEEE 14 bus system with small signal stability assessment. 2014 Eighteenth National Power Systems Conference (NPSC) https://dx.doi.org/10.1109/NPSC.2014.7103883
  11. Denholm, Paul, Trieu Mai, Rick Wallace Kenyon, Ben Kroposki, and Mark O’Malley. (2020). Inertia and the Power Grid: A Guide Without the Spin (NREL/TP-6120-73856). National Renewable Energy Laboratory (NREL)
  12. Edrah, M., Lo, K. L., & Anaya-Lara, O. (2015). Impacts of High Penetration of DFIG Wind Turbines on Rotor Angle Stability of Power Systems. IEEE Transactions on Sustainable Energy, 6(3), 759–766. https://doi.org/10.1109/tste.2015.2412176
  13. Edrah, M., Lo, K. L., & Anaya-Lara, O. (2016). Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions. IET Generation, Transmission & Distribution, 10(15), 3777–3785. https://doi.org/10.1049/iet-gtd.2016.0132
  14. Eriksson, R., Modig, N., & Elkington, K. (2018). Synthetic inertia versus fast frequency response: A definition. IET Renewable Power Generation, 12(5), 507–514. https://doi.org/10.1049/iet-rpg.2017.0370
  15. Eremia, M., & Shahidehpour. (2013). Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control. Wiley
  16. Eshkaftaki, A. A., Rabiee, A., Kargar, A., & Boroujeni, S. T. (2020). An Applicable Method to Improve Transient and Dynamic Performance of Power System Equipped With DFIG-Based Wind Turbines. IEEE Transactions on Power Systems, 35(3), 2351–2361. https://doi.org/10.1109/TPWRS.2019.2954497
  17. Falehi, A. D., Rostami, M., Doroudi, A., & Ashrafian, A. (2012). Optimization and coordination of SVC-based supplementary controllers and PSSs to improve power system stability using a genetic algorithm. Turkish Journal of Electrical Engineering and Computer Sciences, 20(5), 639–654. https://doi.org/10.3906/elk-1010-838
  18. Fdaili, M., Essadki, A., Kharchouf, I., & Nasser, T. (2021). Noncontrolled fault current limiter with reactive power support for transient stability improvement of DFIG-based variable speed wind generator during grid faults. IET Generation, Transmission & Distribution, 32(8). https://doi.org/doi.org/10.1002/2050-7038.12955
  19. Gurung, R., N. Bhattarai, & Kamalasadan, S. (2020). Optimal Oscillation Damping Controller Design for Large-Scale Wind Integrated Power Grid. IEEE Transactions on Industry Applications, 56(4), 4225–4235. https://doi.org/10.1109/TIA.2020.2988432
  20. Hatziargyriou, N., Milanovic, J., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., Hill, D., Hiskens, I., Kamwa, I., Pal, B., Pourbeik, P., Sanchez-Gasca, J., Stankovic, A., Van Cutsem, T., Vittal, V., & Vournas, C. (2021). Definition and classification of power system stability – revisited & extended. IEEE Transactions on Power Systems, 36(4), 3271–3281. https://doi.org/10.1109/TPWRS.2020.3041774
  21. He, P., Fang, Q., Jin, H., Ji, Y., Gong, Z., & Dong, J. (2022). Coordinated design of PSS and STATCOM-POD based on the GA-PSO algorithm to improve the stability of wind-PV-thermal-bundled power system. International Journal of Electrical Power & Energy Systems, 141, 108208. https://doi.org/10.1016/j.ijepes.2022.108208
  22. Hemeida, M. G., Rezk, H., & Hamada, M. M. (2018). A comprehensive comparison of STATCOM versus SVC-based fuzzy controller for stability improvement of wind farm connected to multi-machine power system. Electrical Engineering, 100(2), 935–951. https://doi.org/10.1007/s00202-017-0559-6
  23. Klein, M., Rogers, G. J., & Prabha, K. (1991). A fundamental study of inter-area oscillations in power systems. IEEE Transactions on Power Systems, 6(3), 914–921. https://doi.org/10.1109/59.119229
  24. Kothari, I. J., D. P. Nagrath. (2019). Power System Engineering, 3e. McGraw-Hill Education Pvt. Ltd
  25. Kumar, S., Kumar, A., & Sharma, N. K. (2020). A novel method to investigate voltage stability of IEEE-14 bus wind integrated system using PSAT. Frontiers in Energy, 14(2), 410–418. https://doi.org/10.1007/s11708-016-0440-8
  26. Li, S., Zhang, H., Yan, Y., & Ren, J. (2022). Parameter Optimization to Power Oscillation Damper (POD) Considering its Impact on the DFIG. Frontiers in Energy, 37(2), 1508–1518. https://doi.org/10.1109/TPWRS.2021.3104816
  27. Liu, Y., Liu, Q., Hu, F., Xu, Y., Chen, X., & Chen, S. (2021). Transient stability assessment for power system with wind farm considering the stochasticity. International Transactions on Electrical Energy Systems, 14(2). https://doi.org/10.1002/2050-7038.12854
  28. Ma, Y., Lv, S., Zhou, X., & Gao, Z. (2017). Review analysis of voltage stability in power system. 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 7–12. https://dx.doi.org/10.1109/ICMA.2017.8015779
  29. Milano, F. (2008). Power System Analysis Toolbox Version 2.0.0. University College Dublin
  30. Miller, T. J. E. (2010). Theory of the doubly-fed induction machine in the steady state. The XIX International Conference on Electrical Machines - ICEM 2010, 1–6. https://doi.org/10.1109/ICELMACH.2010.5607742
  31. Morshed, M. J. (2020). A nonlinear coordinated approach to enhance the transient stability of wind energy-based power systems. IEEE/CAA Journal of Automatica Sinica, 7(4), 1087–1097. https://doi.org/10.1109/JAS.2020.1003255
  32. Morshed, M. J., & Fekih, A. (2019). A Probabilistic Robust Coordinated Approach to Stabilize Power Oscillations in DFIG-Based Power Systems. IEEE Transactions on Industrial Informatics, 15(10), 5599–5612. https://doi.org/10.1109/TII.2019.2901935
  33. Muñoz, J. C., & Cañizares, C. A. (2011). Comparative stability analysis of DFIG-based wind farms and conventional synchronous generators. 2011 IEEE/PES Power Systems Conference and Exposition. https://doi.org/10.1109/PSCE.2011.5772545
  34. Nkosi, N. R., Bansal, R. C., Adefarati, T., Naidoo, R. M., & Bansal, S. K. (2023). A review of small-signal stability analysis of DFIG-based wind power system. International Journal of Modelling and Simulation, 43(3), 153–170. https://doi.org/10.1080/02286203.2022.2056951
  35. Pérez-Londoño, S., Rodríguez-García, L., & López, Y. U. (2012). Effects of doubly fed wind generators on voltage stability of power systems. 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA)
  36. Pillai, A. G., Thomas, P. C., Sreerenjini, K., Baby, S., Joseph, T., & Srecdharan, S. (2013). Transient stability analysis of wind integrate power systems with storage using central area controller. 2013 International Conference on Microelectronics, Communications and Renewable Energy (ICMICR-2013)
  37. Prabha, K. (1994). Power System Stability and Control. McGraw-Hill Education, New York
  38. Qiao, W., Venayagamoorthy, G. K., & Harley, R. G. (2009). Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators. IEEE Transactions on Industry Applications, 45(1), 98–107. https://doi.org/10.1109/TIA.2008.2009377
  39. Ramanujam, R. (2010). Power System Dynamics: Analysis and Simulation. PHI Learning Pvt. Ltd
  40. Reza, M., Slootweg, J. G., Schavemaker, P. H., Kling, W. L., & van der Sluis, L. (2003). Investigating impacts of distributed generation on transmission system stability. 2003 IEEE Bologna Power Tech Conference Proceedings, 2, 7 pp. Vol.2-. https://doi.org/10.1109/PTC.2003.1304341
  41. Shabani, H. R., & Kalantar, M. (2021). Real-time transient stability detection in the power system with high penetration of DFIG-based wind farms using transient energy function. International Journal of Electrical Power & Energy Systems, 131. https://doi.org/10.1016/j.ijepes.2021.107319
  42. Shabani, H. R., Kalantar, M., & Hajizadeh, A. (2021). Investigation of the closed-loop control system on the DFIG dynamic models in transient stability studies. International Journal of Electrical Power & Energy Systems, 131. https://doi.org/10.1016/j.ijepes.2021.107084
  43. Shahgholian, G., & Izadpanahi, N. (2016). Improving the performance of wind turbine equipped with DFIG using STATCOM based on input-output feedback linearization controller. Environmental Engineering Science, 4, 65–79. https://www.energyequipsys.com/article_20128_8c989427ad8dfacc589a02518a7e584f.pdf
  44. Simani, S., & Farsoni, S. (2018). Introduction. In Farsoni. S. Simani. S (Ed.), Fault Diagnosis and Sustainable Control of Wind Turbines (pp. 1–12). Butterworth-Heinemann, Elseiver
  45. Simon, L., Ravishankar, J., & Swarup, K. S. (2019). Coordinated reactive power and crow bar control for DFIG-based wind turbines for power oscillation damping. Wind Engineering, 43(2), 95–113. https://doi.org/10.1177/0309524X18780385
  46. Tang, W., Hu, J., Chang, Y., & Liu, F. (2018). Modeling of DFIG-Based wind turbine for power system transient response analysis in rotor speed control timescale. IEEE Transactions on Power Systems, 33(6), 6795–6805. https://doi.org/10.1109/TPWRS.2018.2827402
  47. THANPISIT, K., & NGAMROO, I. (2017). Power oscillation damping control by PSS and DFIG wind turbine under multiple operating conditions. Turkish Journal of Electrical Engineering and Computer Sciences, 25(5), 4354–4368. https://doi.org/10.3906/elk-1702-190
  48. Xia, S., Zhang, Q., Hussain, S. T., Hong, B., & Zou, W. (2018). Impacts of integration of wind farms on power system transient stability. Applied Sciences, 8(8). https://doi.org/10.3390/app8081289
  49. Xu, Y., Chi, Y., & Yuan, H. (2023). Power system stability. In Stability-constrained optimization for modern power system operation and planning (pp. 5–18). https://doi.org/10.1002/9781119848899.ch1
  50. Yang, B., Jiang, L., Wang, L., Yao, W., & Wu, Q. H. (2016). Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. International Journal of Electrical Power & Energy Systems, 74, 429–436. https://doi.org/10.1016/j.ijepes.2015.07.036
  51. Yang, L., Xu, Z., Østergaard, J., Dong, Z. Y., Wong, K. P., & X, Ma. (2011). Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System. IEEE Transactions on Energy Conversion, 26(1), 328–339. https://doi.org/10.1109/TEC.2010.2091130
  52. Yu, S. S., Chau, T. K., Fernando, T., & Iu, H. H. (2018). An Enhanced Adaptive Phasor Power Oscillation Damping Approach With Latency Compensation for Modern Power Systems. IEEE Transactions on Power Systems, 33(4), 4285–4296. https://doi.org/10.1109/TPWRS.2017.2773632
  53. Yunus, A. M. S., Saini, M., Djalal, M. R., Abu‐Siada, A., & Masoum, M. A. S. (2019). Impact of superconducting magnetic energy storage unit on doubly fed induction generator performance during various levels of grid faults. International Review of Electrical Engineering (IREE), 14. https://doi.org/10.15866/iree.v14i4.16472
  54. Zhang, C., Ke, D., Sun, Y., Chung, C. Y., Xu, J., & Shen, F. (2018). Coordinated Supplementary Damping Control of DFIG and PSS to Suppress Inter-Area Oscillations with Optimally Controlled Plant Dynamics. IEEE Transactions on Sustainable Energy, 9(2), 780–791. https://doi.org/10.1109/TSTE.2017.2761813
  55. Zheng, D., Jinxin, O., Xiaofu, X., & Mengyang, L. (2019). Rotor angle stability control for DFIG-integrated power system considering phase-amplitude characteristics of transient-grid voltage. IET Generation, Transmission & Distribution, 13(16), 3549–3555. https://doi.org/10.1049/iet-gtd.2018.6960

Last update:

No citation recorded.

Last update: 2024-04-17 11:24:07

No citation recorded.