skip to main content

Experimentation on enhancement of solar still performance

Department of Physics, Faculty of Science, Zakho University, Zakho - Kurdistan, Iraq

Received: 25 Mar 2023; Revised: 12 May 2023; Accepted: 23 May 2023; Available online: 2 Jun 2023; Published: 15 Jul 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This work presents new results from controlled experiments using well-designed and constructed single-inclination solar stills. The aim of these experiments is to explore methods for enhancing still performance by studying the individual effects of three types of methods. Specifically, the experiments investigate the actual effects of still basin water depth, the use of a sensible heat storage medium, and the treatment of the inner glass surface with waxy substances. The main distinction in this work is the use of solar stills that can achieve thermal efficiencies in excess of 40% under favourable weather conditions without any modification. This high efficiency level allows for meaningful analysis of the impact of modifications on still performance. The results indicate that still yield, productivity, and thermal efficiency decrease significantly when the water depth in the basin exceeds 6 cm. additionally, introducing black gravel in excess of a 2% gravel to water mass ratio in the still basin does not produce a significant change in still thermal efficiency. Treatment of the still inner glass surface with two types of waxy materials resulted in large drop in still performance.

Fulltext View|Download
Keywords: Desalination; Solar Still; Thermal Efficiency

Article Metrics:

  1. Ahmed, S. T. (1988). Performance of a single slope solar still with natural and forced modes of condensation. Solar & Wind Technology, 5, 637–643. https://doi.org/10.1016/0741-983x(88)90045-5
  2. Arduino. (2011). Arduino Mega 2560 Rev3. Retrieved from https://store.arduino.cc/usa/mega-2560-r3
  3. Ayoobi, A., & Ramezanizadeh, M. (2022). A Detailed Review Investigating the Mathematical Modelling of Solar Stills. Frontiers in Energy Research, 10, 879591. https://doi.org/10.3389/fenrg.2022.879591
  4. Ayoub G. M. and Malaeb L. (2012). Developments in Solar Still Desalination Systems: A Critical Review. Critical Reviews in Environmental Science and Technology, 42:2078–2112. https://doi.org/10.1080/10643389.2011.574104
  5. Balaji, R., Aravindh, V., Baburangan, J., Koushik, S., & Mahendran, P. (2019). Performance analysis of single slope solar still using sensible heat storage material. Applied Innovations in Research, 1(June), 120–127. https://doi.org/10.1007/s42621-019-0005-6
  6. Bahadori, M. N., & Edlin, F. E. (1973). Improvement of Solar Stills by Surface Treatment of the Glass. Solar Energy, 14, 339-352. https://doi.org/10.1016/0038-092X(73)90091-1
  7. Baticados, E. J. N., Capareda, S. C., Liu, S., & Akbulut, M. (2020). Advanced Solar Still Development: Improving Distilled Water Recovery and Purity via Graphene-Enhanced Surface Modifiers. Frontiers in Environmental Science, 8, 531049. https://doi.org/10.3389/fenvs.2020.531049
  8. Begum, H. A., Abu-Yousuf, M., & Rabbani, K. S. (2016). Effect of top cover material on productivity of solar distillation unit. Bangladesh Journal of Medical Physics, 9. https://doi.org/10.3329/bjmp.v9i1.26944
  9. Cooper, P. I. (1973). Solar distillation: The water crisis solution. Solar Energy, 15, 205–217. https://doi.org/10.1016/0038-092x(73)90033-8
  10. El-Sebaii, A. A., Yaghmour, S. J., Al-Hazmi, F. S., Faidah, A. S., Al-Marzouki, F. M., & Al-Ghamdi, A. A. (2009). Active single basin solar still with a sensible storage medium. Desalination, 249(2), 699–706. https://doi.org/10.1016/j.desal.2009.06.071
  11. El-Sheikh, I. H. (2016). Effect of Black Granite on the Performance on Single Slope Solar Still. Misr J. Ag. Eng., 33(1), 283–296. https://doi.org/10.21608/mjae.2016.30960
  12. Essa, F. A., Abdullah, A., Majdi, H. S., Basem, A., Dhahad, H. A., Omara, Z. M., Mohammed, S. A., Alawee, W. H., Al-Ezzi, A., & Yusaf, T. (2022). Parameters Affecting the Efficiency of Solar Stills—Recent Review. Sustainability, 14(17), 10668. https://doi.org/10.3390/su141710668
  13. GardX. (No date) GardX Protection Conserver [Product safety data sheet]. Retrieved April 29, 2023, from https://www.gardx.co.uk/sites/default/files/datasheets/GardX%20Conserver-%20Material%20Safety%20Data%20Sheet.PDF.pdf
  14. Garg, H. P., & Mann, H. S. (1976). Performance studies on a solar still with a basin type collector. Solar Energy, 18, 159–164. https://doi.org/10.1016/0038-092X(76)90052-9
  15. Ithape, P. K., Barve, S. B., & Nadgire, A. R. (2017). Climatic and Design Parameters Effects on Productivity of Solar Stills: A Review. International Journal of Current Engineering and Scientific Research, 4(7), 2394-0697; http://troindia.in/journal/ijcesr/vol4iss7/17-23.pdf
  16. Jadhav, M. V. (2011). Performance of Black Granite Basin Solar Still: A Comparative Study. Int J Engg Techsci, 2(2), 161-168. http://www.techsciencepub.com/ijets/docs/Archives_1/vol2issue2/ijets2011020206.pdf
  17. Jamal, W., & Siddiqui, M. A. (2012). Effect of water depth and still orientation on productivity for passive solar distillation. International Journal of Engineering Research and Applications, 2(2), 1659-1665. https://www.ijera.com/papers/Vol2_issue2/JW2216591665.pdf
  18. Kabeel A. E., Abdelgaied M., and Eisa A. (2018). Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still. Renew. Energy. 132, 119-128 https://doi: 10.1016/j.renene.2018.07.147
  19. Khafaji, H. Q. A., Abdul Wahhab, H. A., Al-Maliki, W. A. K., Alobaid, F., & Epple, B. (2022). Energy and Exergy Analysis for Single Slope Passive Solar Still with Different Water Depth Located in Baghdad Centre. Appl. Sci., 12, 8561. https://doi.org/10.3390/app12178561
  20. Khalifa A. J. N. and Hamood A. M. (2009). Performance correlations for basin type solar stills. Desalination 249 (2009) 24–28; https://doi: 10.1016/j.desal.2009.06.011
  21. Khalifa A. J. N. and Hamood A. M. (2009). On the verification of the effect of water depth on the performance of basin type solar stills. Solar Energy 83 (2009) 1312–1321; https://doi.org/10.1016/j.solener.2009.04.006
  22. Kalita, P., Dewan, A. N., & Borah, S. (2016). A review on recent developments in solar distillation units. Sadhana, 41(2), 203-223. https://doi.org/10.1007/s12046-015-0445-8
  23. Khalifa, A. J., & Hamood, A. M. (2009). On the verification of the effect of water depth on the performance of basin type solar stills. Solar Energy, 83, 1312–1321. https://doi.org/10.1016/j.solener.2009.04.006
  24. Kumar, D., Layek, A., & Kumar, A. (2020). Performance enhancement of single slope solar still integrated with flat plate collector for different basin water depth. AIP Conference Proceedings, 2273, 050007. https://doi.org/10.1063/5.0024247
  25. Manchanda, H., & Kumar, M. (2015). A comprehensive decade review and analysis on designs and performance parameters of passive solar still. Renewable, 2(1), 17. https://doi.org/10.1186/s40807-015-0019-8
  26. Meteoblue. (2022, September). Zakho, Iraq - Monthly weather archive - September 2022. Meteoblue. https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/zakho_iraq_89570?fcstlength=1m&year=2022&month=9
  27. Mohamed, A. H., Shmroukh, A. N., & Attalla, M. (2021). Optimum Seawater Depth in Modified Solar Still Using Vertical Flax Porous Media. Proceedings of the 5th International Conference on Energy Engineering December 24 – 26 – Aswan – Egypt
  28. Muftah, A. F., Alghoul, M., Fudholi, A. A., Abdul-Majeed, M. M., & Sopian, K. (2014). Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews, 32, 430–447. https://doi.org/10.1016/j.rser.2013.12.052
  29. Naveenkumar, R., Shanmugam, S., & Veerappan, A. B. (2022). Influence of basin water depth in the distilled yield of traditional and developed passive single basin double slope solar still. World Journal of Engineering. https://doi.org/10.1108/WIE-08-2022
  30. OPTICS-PRO.com. (2023). TFA Weather Station Nexus. Retrieved from https://www.optics-pro.com/instruments/tfa-weather-station-nexus/p,13963
  31. Panchal, H., Patel, D. K., & Patel, P. (2018). Theoretical and experimental performance analysis of sandstones and marble pieces as thermal energy storage materials inside solar stills. Int. J. Ambient Energy, 39(3), 221-229. https://doi.org/10.1080/01430750.2017.1298059
  32. Panchal, H., Patel, P., Patel, N., & Thakkar, H. (2015). Performance analysis of solar still with different energy-absorbing materials. International Journal of Ambient Energy, 36(2), 99-106. https://doi.org/10.1080/01430750.2014.906464
  33. PCE Instruments UK Ltd. (n.d.). Solar radiation meter PCE-SPM 1. Retrieved April 27, 2023, from http://www.industrial-needs.com/technical-data/solar-radiation-meter-pce-spm1.htm
  34. Phadatare, M. K., & Verma, S. K. (2007). Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination, 217(1-3), 267-275. https://doi.org/10.1016/j.desal.2006.09.003
  35. Peng, G., Sharshir, S. W., Hu, Z., Ji, R., Ma, J., Kabeel, A. E., Liu, H., Zang, J., & Yang, N. (2021). A compact flat solar still with high performance. International Journal of Heat and Mass Transfer, 179, 121657. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121657
  36. REOTEMP Instruments Cooperation. (2023). Type K thermocouple. Retrieved April 27, 2023, from https://www.thermocoupleinfo.com/type-k-thermocouple.htm#:~:text=Type%20K%20Accuracy%20(whichever%20is,%2B%2F%2D%201.1C%20or%200.4%25
  37. Sakthivel, M., & Shanmugasundaram, S. (2008). Effect of energy storage medium (black granite gravel) on the performance of a solar still. International Journal of Energy Research, 32(1), 68-82. https://doi.org/10.1002/er.1335
  38. Shanmugan, S., Janarthanan, B., & Chandrasekaran, J. (2012). Performance of single-slope single-basin solar still with sensible heat storage materials. Desalination and Water Treatment, 41(1-3), 195-203. https://doi.org/10.1080/19443994.2012.681832
  39. Singh, S. K., Mittal, M. K., & Sharma, D. (2022). Thermal performance enhancement of basin-type solar still coupled with mini solar pond and shallow solar pond in closed cycle mode. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 388-401. https://doi.org/10.1080/15567036.2021.1995784
  40. Taghvaei, H., Jafarpur, K., Estahbanati, M. R. K., Feilizadeh, M., & Ardekani, M. A. S. A. (2014). Thorough investigation of the effects of water depth on the performance of active solar stills. Desalination, 347, 77-85. https://doi.org/10.1016/j.desal.2014.06.012
  41. Tahir, A. M. (1997). Desalination of salty water by solar energy (M.Sc. thesis). College of Engineering, University of Technology, Iraq https://iqdr.iq/search?print&view=7a5d598f622ab465fe9cf54777f32339〈=en
  42. Tanaka, H., Yamashita, A., & Watanabe, K. (1982). Solar distillation with a heat pipe. Solar World Forum, 2. https://doi.org/10.1007/978-94-009-3797-0_2
  43. Tiwari, A., & Tiwari, G. (2006). Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination, 195, 78-94. https://doi.org/10.1016/j.desal.2005.11.014
  44. WiNSO. (No date) WiNSO Professional Quick Wax [Product description]. Retrieved April 29, 2023, from https://winso.pl/en/product/402-402_402_wax_500_waterless_wax
  45. Younis, O., Hussein, A. K., Attia, M. E. H., Aljibori, H. S. S., Kolsi, L., Togun, H., Ali, B., Abderrahmane, A., Subkrajang, K., & Jirawattanapanit, A. (2022). Comprehensive review on solar stills-latest developments and overview. Sustainability, 14, 10136. https://doi.org/10.3390/su141610136
  46. Zaki, G. M., El-Dali, T., & El-Shafiey, M. (1992). Improved Performance of a Solar Still. Faculty of Engineering, Tripoli, Libya https://www.ahlia.edu.bh/faculty/prof-shawqi-mohamed-al-dallal-2/
  47. Zaki, G. M., Fatani, A., & Al-Turki, A. (1992). Solar still productivity enhancement using external heat storage. TRSCE, 19. https://doi.org/10.1016/0960-1481(92)90037-f
  48. Zein, M., & Al-Dallah, S. (1993). Solar desalination correlation with meteorological parameters. Physics Department, University of Bahrain. https://www.amazon.ca/Solar-Energy-Prospect-Arab-World/dp/0080325734

Last update:

  1. Overcoming shading challenges in solar distillers: A comparative study of copper conical fins and sand-filled fins

    Mohammed El Hadi Attia, Abd Elnaby Kabeel, M.A. Elazab, Alaa Salah Salam. Solar Energy Materials and Solar Cells, 280 , 2025. doi: 10.1016/j.solmat.2024.113293
  2. Experimental investigation on the performance of a pyramid solar still for varying water depth, contaminated water temperature, and addition of circular fins

    Mayilsamy Yuvaperiyasamy, Natarajan Senthilkumar, Balakrishnan Deepanraj. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.57327
  3. Modelling and Analysis of a Single Slope Solar Still for Desalination of Water

    G. S. Girishkumar, M. R. Kamesh, S. Rohith, D. Yogaraj, M. Abhilash, H. Sathish, R. Vinayakumar, C. Somashekar. Journal of Mines, Metals and Fuels, 2024. doi: 10.18311/jmmf/2024/44523
  4. Study on the use of cooling water as input water to improve double slope solar still performance

    Nova Risdiyanto Ismail, Purbo Suwandono, Dadang Hermawan, Frida Dwi Anggraeni. EUREKA: Physics and Engineering, 2024. doi: 10.21303/2461-4262.2024.003334
  5. Enhancing conical solar still performance using high conductive hollow cylindrical copper fins embedded by PCM

    Mahmoud Bady, Mohammed El Hadi Attia, Abd Elnaby Kabeel, M.A. Elazab. Solar Energy, 282 , 2024. doi: 10.1016/j.solener.2024.112990

Last update: 2025-01-15 08:15:14

No citation recorded.