Pemetaan Hidrogeologi dan Analisis Geokimia Air Tanah Cekungan Air Tanah (CAT) Kendal

*Thomas Triadi Putranto scopus  -  Geological Engineering Dept, Diponegoro University, Indonesia
Wahju Krisna Hidayat  -  Geological Engineering Dept, Diponegoro University
Sinatrya Diko Prayudi  -  Geological Engineering Dept, Diponegoro University
Received: 5 Jun 2020; Published: 31 Aug 2020.
Open Access
Citation Format:
Abstract

Cekungan Air Tanah (CAT) Kendal merupakan salah satu dari 31 cekungan air tanah yang terletak di wilayah Provinsi Jawa Tengah yang memiliki intensitas pemanfaatan yang tinggi. Oleh sebab itu, perlu adanya evaluasi kondisi hidrogeologi untuk mengetahui aspek kualitas maupun kuantitas dari air yang berada dalam CAT Kendal tersebut. Penelitian ini bertujuan untuk inventarisasi titik minatan air tanah di dalam wilayah CAT Kendal, pola dan arah aliran air tanah, kualitas air tanah dan menentukan asal usul air tanah. Metodologi yang digunakan mencakup pendekatan lapangan melalui pemetaan hidrogeologi serta analisis hidrokimia air tanah. Terdapat dua system akufier yaitu akuifer bebas dan akuifer tertekan. Hasil pemetaan hidrogeologi diperoleh 100 titik minatan hidrogeologi yang terbagi atas 73 titik sumur gali dan 2 titik mata air untuk serta 25 titik sumur bor untuk merepresentasikan sistem akuifer. Range nilai daya hantar listrik dari akuifer bebas dan akuifer tertekan yaitu 260-13.050262 μS/cm dan 1.788 μS/cm. Nilai pH berkisar antara 6,3-8,3 dan 6.5-8.8. Pola aliran airtanah bergerak dari selatan ke utara mengikuti morfologi yang melandai ke arah utara. Kondisi litologi mempengaruhi fasies air tanah. Batuan vulkanik menyebabkan air tanah memiliki kandugan mineral kation Ca2+ dan Mg2+ dengan anion bervariasi. Sementara itu lapisan alluvium di daerah dataran akan menyebabkan air tanah kaya akan mineral sodium (Na+) dengan anion berupa klorida (Cl-) ataupun sulfat (SO42-).

Keywords: Air tanah, Hidrogeologi, Kendal, Geokimia
Funding: Fakultas Teknik Universitas Diponegoro dan Dinas Energi dan Sumber Daya Mineral Provinsi Jawa Tengah

Article Metrics:

  1. Adeyeye, O.A., Ikpokonte, E.A., Arabi, S.A. 2019. GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. The Egyptian Journal of Remote Sensing and Space Sciences 22 (2019) 175–181
  2. Bäumle, R., Himmelsbach, T., and Noell, U. 2019. Hydrogeology and geochemistry of a tectonically controlled, deep-seated and semi-fossil aquifer in the Zambezi Region (Namibia). Hydrogeology Journal (7):885–914
  3. Effendi, A.T. 1985. Peta Hidrogeologi Indonesia Skala 1:250.000. Lembar VI (Pekalongan), Direktorat Geologi Tata Lingkungan, Bandung
  4. Freeze, R.A. and Cherry J.A. 1979. Groundwater. Prentice Hall-Internationl Inc., UK
  5. Furtak, H. and Langguth, H.R. 1967. Zur hydrochemischen kennzeichnung von grundwässern und grundwassertypen mittels kennzahlen (Identification of hydrochemical types of groundwater aquifer using major ions). –Mem. IAH–Congress 1965. Hannover. VII: pp 86–96
  6. Hadipurwo. 2006, Konservasi sebagai Upaya Penyelamatan Airtanah di Indonesia. Direktorat Pembinaan Pengusahaan Panas Bumi dan Pengelolaan Air Tanah, Direktorat Jenderal Mineral Batubara dan Panas Bumi, Departemen Energi dan Sumberdaya Mineral, Bandung
  7. Hammouri, N., El-Naqa, A., Barakat, M., 2012. An integrated approach to groundwater exploration using remote sensing and geographic information. Water Resour. Protect. 4, 717–724
  8. Hamzah, Z., Aris, A.Z., Ramli, M.F. 2017. Groundwater quality assessment using integrated geochemical methods, multivariate statistical analysis, and geostatistical technique in shallow coastal aquifer of Terengganu, Malaysia. Arab J Geosci 10 (49)
  9. Hem, J.D. 1959. Study and interpretation of chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper, 1473, 25 p
  10. Jha, K.M., Chowdary, V.M., Chowdhury, A., 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18, 1713–1728
  11. Kodoatie, R.J. 2012. Tata Ruang Air Tanah. Yogyakarta: Andi
  12. Kumar, P., Herath, S., Avtar, R., and Takeuchi, K. 2016. Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustain. Water Resour. Manag. 2, 419–430
  13. Madan, K.J., Chowdary, V.M., Chowdhury A. 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18(7):1713–1728
  14. McCuen, R. H. 1989. Hydrologic Analysis and Design. New Jersey: Prentice Hall
  15. Narany, T.S., Ramli, M.F., Aris, A.Z., Sulaiman, W.N.A., Juahir, H., and Fakharian, K. 2014. Identification of the Hydrogeochemical Processes in Groundwater Using Classic Integrated Geochemical Methods and Geostatistical Techniques, in Amol-Babol Plain, Iran. The Scientific World Journal 1-15
  16. Piper, A.M. 1944. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Eos, Transactions American Geophysical Union, 25, 914-928
  17. Piper, A.M. 1953. A graphic Procedure I The Geochemical Interpretation of Water Analysis. USGS Groundwater No. 12
  18. Putranto, T.T., Hidajat, W.K., and Wijaya, H. Hydrochemical Assessment of Unconfined Aquifer System In Bayat Melange Complex, Klaten, Indonesia International Journal of GEOMATE, Nov., 2017, 13(39), 17-24
  19. Republik Indonesia. 2010. Peraturan Menteri Kesehatan No. 492/MENKES/PER/IV/2010 Tentang Persyartan Kualitas Air Minum
  20. Republik Indonesia. 2017. Peraturan Menteri Energi dan Sumber Daya Mineral No. 2 Tahun 2017, Tentang Cekungan Air Tanah
  21. Sener E., Davraz, A., and Ozcelik, M. 2005. An integration of GIS and remote sensing in ground water investigations: a case study in Burdur, Turkey. Hydrogeology 13(5–6):826–834
  22. Srivastava, P.K., and Bhattacharya, A.K., 2006. Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int. J. Remote Sens. 27 (20), 4599–4620
  23. Stiff, H.A.Jr. 1951. The interpretation of chemical water analysis by means of patterns: Journal of Petroleium Technology, v. 3, no. 10, p. 15(17)
  24. Talabi, A.O., and Tijani, M.N., 2011. Integrated remote sensing and GIS approach to Ground-water potential assessment in the basement terrain of Ekiti area southwestern Nigeria. RMZ—Mater. Geoenviron. 58 (3), 303–328
  25. Thanden R.E., Sumadirja H., Richard P.W., Sutisna K. dan Amin T.C. 1996. Peta Geologi Lembar Magelang dan Semarang (1409-2, 1406-5), skala 1: 100.000, Jawa Tengah. Pusat Pengembangan dan Penelitian Geologi, Bandung
  26. Thomas, B.C., Kuriakose, S.L., and Jaydev, S.K. 2009. A method for groundwater prospect zonation in data poor areas using remote sensing and GIS: a case study in Kalikavu Panchayath of Malappuram district, Kerala, India. Int J Digit Earth 2(2):155–170
  27. Tirumalesh K., Shivanna K., Sriraman A.K., and Tyagi, A.K. 2010. Assessment of quality and geochemical processes occurring in groundwaters near central air conditioning plant site in Trombay, Maharashtra, India. Environ Monit Assess 163:171–184
  28. Van Zuidam R. A. 1983. Guide to Geomoprhological Aerial Photographic Interpretation and Mapping. ITC Enschede, The Netherlands, pp 1—245
  29. Wilcox, L. V. 1955. Classification and Use of Irrigation Water. US Geol Dep Agri Arc
  30. Zekai, S. 2015. Practical and Applied Hydrogeology. Elsevier: Amsterdam
  31. Zhou Z., Zhang G., Yan M., and Wang J. 2012. Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai Sea, North China. Environ Monit Assess 184:3697–3710

Last update: 2021-03-01 03:15:31

No citation recorded.

Last update: 2021-03-01 03:15:31

No citation recorded.