skip to main content

Pengaruh Beban Hidrolik pada Biofilter Anaerobik untuk Mengolah Air Limbah Rumah Potong Ayam dengan Menggunakan Persamaan Eckenfelder

Universitas PGRI Adi Buana Surabaya, Indonesia

Received: 12 Jun 2020; Published: 30 Nov 2020.
Editor(s): Sudarno Utomo

Citation Format:
Abstract

Industri Rumah Potong Ayam (RPA) bergerak dalam fungsi pemotongan ayam hidup dan mengolah menjadi karkas yang siap konsumsi. Industri RPA menghasilkan limbah baik dalam proses itu sendiri serta dalam mencuci peralatan dan fasilitas, hal ini ditandai dengan tingginya konsentrasi zat organik dan padatan tersuspensi. Tujuan penelitian ini adalah mengkaji pengaruh beban hidrolik pada biofilter anaerobik dengan menggunakan persamaan Eckenfelder berdasarkan variasi konsentrasi air limbah. Metode yang digunakan dalam penelitian ini adalah metode eksperimen yang dilakukan dalam skala laboratorium. Variasi beban hidrolik yang digunakan yaitu 0,0015 m3/m2.hari, 0,0022 m3/m2.hari, dan 0,0035 m3/m2.hari. Media yang digunakan sebagai tempat tumbuh dan berkembangbiaknya mikroorganisme adalah media bio ball dan media koral. Penerapan teknologi pengolahan air limbah dengan sistem anaerobik meiliki keunggulan tersendiri bila dibandingkan dengan pengolahan air limbah secara aerobik. Penggunaan nilai konstanta 0,5 diperoleh nilai tertinggi sebesar 1,90 yang terjadi pada reaktor 3 (R3) pada media bio ball dan 0,99 pada media koral. Hal ini menunjukan bahwa penerapan persamaan Eckenfelder pada sistem anaerobik lebih baik dari sistem aerobik. Biofilter anaerobik memberikan efisiensi yang sama pada beban hidrolik yang rendah yaitu sebesar 0,0015 m3/m2.hari. Rata-rata efisiensi penyisihan beban pencemaran BOD5 dan COD mencapai 96 % pada reaktor 1 (R1).

Abstract

The chicken slaughterhouse industry is engaged in the function of cutting live chickens and processing them into carcasses that are ready for consumption. The chicken slaughterhouse industry generates waste both in the process itself and in washing equipment and facilities, this is characterized by high concentrations of organic matter and suspended solids. The objective of this study is to examine the effect of hydraulic loads on anaerobic biofilter using the Eckenfelder equation based on variations in wastewater concentration. The method used in this study is an experimental method conducted on a laboratory scale. The hydraulic load is used namely 0,0015 m3/m2.day, 0,0022 m3/m2.day, and 0,0035 m3/m2.day. Media that is used as a growth and cultivation of microorganisms is bio ball media and coral media. The application of wastewater treatment technology with the anaerobic system has its advantages when compared to aerobic wastewater treatment. The use of a constant value of 0,5 obtained the highest value of 1,90 which occurred in reactor 3 (R3) on bio-ball media and 0,99 on coral media. This shows that the application of the Eckenfelder equation to anaerobic systems is better than aerobic systems. Anaerobic biofilter provides the same efficiency at low hydraulic loads in the amount of 0,0015 m3/m2.day. The average removal efficiency of BOD5 and COD pollution load reaches 96% in reactor 1 (R1).

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (187KB)    Indexing metadata
Keywords: Air Limbah RPA, Beban Hidrolik, Biofilter Anaerobik, Persamaan Eckenfelder

Article Metrics:

  1. Al Kholif, M. (2013). Aplikasi Biofilter Anaerobik Pada Air Limbah Cucian dari Rumah Potong Ayam [Institut Teknologi Sepuluh November]. http://digilib.its.ac.id/ITS-paper-33021140003343/28903
  2. Al Kholif, M., & Hermana, J. (2013). The Wastewater Treatment of Chicken Slaughterhouse by Using Submerged up flow Anaerobic Biofilter. 4th International Seminar Department of Environmental Engineering Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Public Health Program Study, Medical Faculty, Udayana University, 1–7
  3. Amorim, A. K. B., de Nardi, I. R., & Del Nery, V. (2007). Water conservation and effluent minimization: Case study of a poultry slaughterhouse. Resources, Conservation and Recycling, 51(1), 93–100. https://doi.org/10.1016/j.resconrec.2006.08.005
  4. Aziz, H. A., Ling, T. J., Haque, A. A. M., Umar, M., & Adlan, M. N. (2011). Leachate treatment by swim-bed bio fringe technology. Desalination, 276(1), 278–286. https://doi.org/https://doi.org/10.1016/j.desal.2011.03.063
  5. Baker, B. (2016). Explore the Pollution Load of Slaughterhouse Wastewater and Their Treatment Potential Using Biofilm Reactor. International Journal of Scientific and Engineering Research, 7, 1757–1761
  6. Bakhshi, Z., Najafpour, G., Kariminezhad, E., Pishgar, R., Mousavi, N., & Taghizade, T. (2011). Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environmental Technology, 32(16), 1835–1841. https://doi.org/10.1080/09593330.2011.562925
  7. Bayr, S., Pakarinen, O., Korppoo, A., Liuksia, S., Väisänen, A., Kaparaju, P., & Rintala, J. (2012). Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresource Technology, 120, 106–113. https://doi.org/10.1016/j.biortech.2012.06.009
  8. Caixeta, C. E. T., Cammarota, M. C., & Xavier, A. M. F. (2002). Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Bioresource Technology, 81(1), 61–69. https://doi.org/https://doi.org/10.1016/S0960-8524(01)00070-0
  9. Choksuchart Sridang, P., Kaiman, J., Pottier, A., & Wisniewski, C. (2006). Benefits of MBR in seafood wastewater treatment and water reuse: study case in Southern part of Thailand. Desalination, 200(1), 712–714. https://doi.org/https://doi.org/10.1016/j.desal.2006.03.509
  10. Cuetos, M., Gómez, X., Otero, M., & Morán, A. (2008). Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochemical Engineering Journal, 40, 99–106. https://doi.org/10.1016/j.bej.2007.11.019
  11. De Nardi, I. R., Del Nery, V., Amorim, A. K. B., dos Santos, N. G., & Chimenes, F. (2011). Performances of SBR, chemical-DAF and UV disinfection for poultry slaughterhouse wastewater reclamation. Desalination, 269(1–3), 184–189. https://doi.org/10.1016/j.desal.2010.10.060
  12. Ebrahimi, A., & Najafpour, G. D. (2016). Iranica Journal of Energy & Environment Biological Treatment Processes : Suspended Growth vs . Attached Growth. Iranica Journal of Energy and Environment, 7(2), 114–123
  13. Eckenfelder, W. W., Patoczka, J. ., & Pulliam, G. W. (1970). Anaerobic vs Aerobic Treatment.pdf
  14. Kist, L. T., El-Moutaqi, S., & Machado, Ê. L. (2009). Cleaner production in the management of water use at a poultry slaughterhouse of Vale do Taquari, Brazil: a case study. Journal of Cleaner Production, 17(13), 1200–1205. https://doi.org/10.1016/j.jclepro.2009.04.006
  15. Knight, R., Jr, V., Borer, R., & Clarke, R. (2000). Constructed wetlands for livestock wastewater management. Ecological Engineering, 15, 41–55. https://doi.org/10.1016/S0925-8574(99)00034-8
  16. Kobya, M., Senturk, E., & Bayramoglu, M. (2006). Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of Hazardous Materials, 133(1–3), 172–176. https://doi.org/10.1016/j.jhazmat.2005.10.007
  17. Liu, Z.-G., Zhou, X.-F., Zhang, Y.-L., & Zhu, H.-G. (2012). Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition. Waste Management, 32(1), 137–143. https://doi.org/https://doi.org/10.1016/j.wasman.2011.09.015
  18. Massé, D. I., & Masse, L. (2001). The effect of temperature on slaughterhouse wastewater treatment in anaerobic sequencing batch reactors. Bioresource Technology, 76(2), 91–98. https://doi.org/10.1016/S0960-8524(00)00105-X
  19. Núñez, L. A., & Martínez, B. (1999). Anaerobic treatment of slaughterhouse wastewater in an Expanded Granular Sludge Bed (EGSB) reactor. Water Science and Technology, 40(8), 99–106. https://doi.org/https://doi.org/10.1016/S0273-1223(99)00614-9
  20. Nurkholis, A., Rahma, A. D., Widyaningsih, Y., Maretya, D. A., Wangge, G. A., Widiastuti, A. S., Suci, A., & Abdillah, A. (2016). Proses Pengelolaan Air Limbah secara Biologis (Biofilm): Trickling Filter dan Rotating Biological Contactor (RBC). https://doi.org/10.31227/osf.io/euhnx
  21. Peraturan Gubernur Jawa Timur Nomor 72 tahun 2013. (2013). Tentang Baku Mutu Air Limbah bagi Industri dan/atau Kegiatan Usaha lainnya
  22. Rosso, D., Lothman, S. E., Jeung, M. K., Pitt, P., Gellner, W. J., Stone, A. L., & Howard, D. (2011). Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes. Water Research, 45(18), 5987–5996. https://doi.org/https://doi.org/10.1016/j.watres.2011.08.060
  23. Salminen, E., & Rintala, J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste - A review. Bioresource Technology, 83(1), 13–26. https://doi.org/10.1016/S0960-8524(01)00199-7
  24. Singgih, M. L., & Kariana, M. (2008). Pendekatan Produktivitas dan Kinerja Lingkungan dengan Pendekatan Green Productivity pada Rumah Potong Ayam XX. Jurnal Teknologi Dan Manajemen Lingkungan, 9(2), 21–26
  25. Sterling, M. C., Lacey, R. E., Engler, C. R., & Ricke, S. C. (2001). Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresource Technology, 77(1), 9–18. https://doi.org/https://doi.org/10.1016/S0960-8524(00)00138-3
  26. Sudarno, U., Bathe, S., Winter, J., & Gallert, C. (2010). Nitrification in fixed-bed reactors treating saline wastewater. Applied Microbiology and Biotechnology, 85(6), 2017–2030. https://doi.org/10.1007/s00253-009-2301-4
  27. Sugito, Binawati, D. K., & Al Kholif, M. (2016). The effect of BOD concentrate influet to remove pollutant load in waste water of a chicken slaughterhouse. ARPN Journal of Engineering and Applied Sciences, 11(5), 3519–3524
  28. Vartak, D. R., Engler, C. R., McFarland, M. J., & Ricke, S. C. (1997). Attached-film media performance in psychrophilic anaerobic treatment of dairy cattle wastewater. Bioresource Technology, 62(3), 79–84. https://doi.org/https://doi.org/10.1016/S0960-8524(97)00135-1
  29. Wang, Y., & Yuan, Q. (2005). Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochemistry - PROCESS BIOCHEM, 40, 1733–1739. https://doi.org/10.1016/j.procbio.2004.06.039

Last update:

No citation recorded.

Last update: 2024-09-08 19:12:39

No citation recorded.