skip to main content

Review: Quorum Sensing Bakteri dan Peranannya pada Perubahan Nilai pH di Kolong Pascatambang Timah dengan Umur Berbeda

Universitas Bangka Belitung, Indonesia

Published: 30 Nov 2020.
Editor(s): Sudarno Utomo

Citation Format:
Abstract

Bakteri menunjukkan kemampuannya untuk hidup sosial dan berinteraksi dengan koloni lainnya dengan cara membangun suatu komunikasi interseluler melalui mekanisme yang disebut quorum sensing (QS). Komunikasi seluler ini dapat memfasilitasi komunitas bakteri untuk saling merespon, melakukan metabolisme, menyampaikan informasi densitas, dan beraktivitas dengan mengenali molekul sinyal berupa feromon (pheromones) atau autoinducers. Review ini membahas tentang interaksi antarbakteri di kolong pascatambang timah yang dideskripsikan sebagai suatu sistem quorum sensing bakteri tersebut dan peranannya di dalam menghadapi perubahan nilai pH. Populasi bakteri anggota Filum Proteobacteria cenderung sangat sentral di kolong pascatambang timah karena keberadaannya mendominasi di semua umur kolong dengan jumlah yang tinggi. Proteobacteria mampu bersinergi dengan bakteri asidofilik lainnya dalam melakukan aktivitas oksidasi unsur-unsur (elements) yang berdampak pada terbentuknya kondisi pH asam (pH = 3). Proteobacteria juga menunjukkan indikasi mampu mendorong munculnya fungsi penting dari Bacteroidetes, Planctomycetes, Cyanobacteria, Spirochaeta, dan bakteri lainnya dengan melakukan dekomposisi bahan organik ataupun aktivitas metabolisme yang lain sehingga mampu meningkatkan nilai pH lingkungan kolong pascatambang timah menjadi netral (pH = 7). Struktur komunitas bakteri menunjukkan komposisi bakteri berbeda pada setiap perairan kolong yang mengalami kronosekuens berbeda. Kolong yang berumur < 1 tahun dengan pH sekitar 3 cenderung didominasi Filum Proteobacteria sekitar 30%, kolong berumur 5-10 tahun dengan pH sekitar 3 didominasi Filum Bacteroidetes sekitar > 40%, dan kolong berumur > 15 tahun dengan pH sekitar 7 didominasi Filum Planctomycetes > 37%. Interaksi bakteri melalui quorum sensing diharapkan bermanfaat di dalam proses pengelolaan lingkungan perairan pascatambang timah sehingga menghasilkan suatu ekosistem perairan yang lebih bermanfaat bagi manusia dan organisme perairan lainnya.

ABSTRACT

Bacteria demonstrate their ability to live socially and to interact with other colonies by establishing an intercellular communication through a mechanism called quorum sensing (QS). This cellular communication can facilitate the bacterial community to respond to each other, carry out metabolism, density information, and activity by recognizing signaling molecules in the form of pheromones or autoinducers. This review discussed the interaction between bacteria in abandoned tin mining pit waters which was described as a quorum sensing system for the bacteria and its role to encounter the pH value changes. The member population of Phylum Proteobacteria looked very central in the abandoned tin mining pit because its dominance in all age of the pit with a high number. Proteobacteria were able to synergize with the other of acidophilic bacteria to carried out the oxidation activities of the elements that have an impact on the formation of acidic pH conditions (pH = 3). Proteobacteria also showed indications of being able to encourage the emergence of important functions of Bacteroidetes, Planctomycetes, Cyanobacteria, Spirochaeta, and other bacteria by decomposing organic matter or other metabolic activities so as to increased the pH value of ex-tin minig pits enironments to neutral (pH = 7). Community structure of bacteria showed bacteria composition was different for each pits water with chronosequence. Pits in age < 1 year with pH about 3 were dominated Phylum Proteobacteria about 30%, pits in age 5-10 year with pH about 3 were dominated Phylum Bacteroidetes about > 30%, and pits in age > 15 year with pH about 7 were dominated Phylum Planctomycetes about > 37%. The interaction of bacteria through quorum sensing is expected to be useful in the process of environmental management of post-tin mining waters to produce an aquatic ecosystem that is more beneficial to humans and other aquatic organisms.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Cover Letter
Subject
Type Research Instrument
  Download (115KB)    Indexing metadata
Keywords: Quorum sensing, Bakteri, Kolong pascatambang timah, Manajemen lingkungan, Nilai pH

Article Metrics:

  1. Ahmad F. 2013. Distribusi dan Prediksi Tingkat Pencemaran Logam Berat (Pb, Cd, Cu, Zn, dan Ni) dalam Sedimen di Perairan Pulau Bangka Menggunakan Indeks Beban Pencemaran dan Indeks Geoakumulasi. Jurnal Ilmu dan Teknologi Kelautan Tropis, Vol. 5 No. 1. Hal 170-181
  2. Allen RC, McNally L, Popat R, Brown SP. 2016. Quorum Sensing Protects Bacterial Co-Operation from Exploitation by Cheats. The ISME Journal, Vol. 10 No. 7. Pages 1-11
  3. Andersen CB. 2002. Understanding Carbonate Equilibria by Measuring Alkalinity in Experimental and Natural Systems. Journal of Geoscience Education, Vol. 50 No. 4. Pages 389-403
  4. Ashraf MA, Maah MJ, Yusoff I. 2010. Study of Water Quality and Heavy Metals in Soil & Water of Ex-Mining Area Bestari Jaya, Peninsular Malaysia. International Journal of Basic & Applied Sciences IJBAS-IJENS, Vol. 10 No. 3. Pages 7-12
  5. Ashraf MA, Maah MJ, Yusoff I. 2011. Analysis of Physio-Chemical Parameters and Distribution of Heavy Metals in Soil and Water of Ex-Mining Area of Bestari Jaya, Peninsular Malaysia. Asian Journal of Chemistry, No. 238. Pages 3493-3499
  6. Ashraf MA, Maah MJ, Yusoff I. 2012. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment. The Scientific World Journal. Pages 1-15
  7. Bassler BL. 2002. Small talk: Cell-To-Cell Communication in Bacteria. Cell. Vol. 109 No. 4. Pages 421-424
  8. Borges A, Simoes M. 2019. Review: Quorum Sensing Inhibition by Marine Bacteria. Marine Drugs, Vol. 17 No. 7. Pages 427-452
  9. Celebi EE, Oncel MS. 2016. Determination of Acid Forming Potential of Massive Sulfide Minerals and The Tailings Situated in Lead/Zinc Mining District of Balya (NW Turkey). Journal of African Earth Sciences, No. 124. Pages 487-496
  10. Claassens S, Van Rensburg PJJ, Maboeta MS, Van Rensburg L. 2008. Soil Microbial Community Function and Structure in a Post-Mining Chronosequence. Water, Air, & Soil Pollution, Vol. 194 No. 1-4. Pages 315-329
  11. Claassens S, Van Rensburg PJJ, Maboeta MS, Van Rensburg L. 2008. Soil Microbial Community Function and Structure in a Post-Mining Chronosequence. Water, Air, & Soil Pollution, Vol. 194 No. 1-4. Pages 315-329
  12. Curtis P, Nakatsu CH, Konopka A. 2002. Aciduric Proteobacteria Isolated from pH 2.9 Soil. Archives of Microbiology, Vol. 178 No. 1. Pages 65-70
  13. Churchill ME, Chen L. 2011. Structural Basis of Acyl-Homoserine Lactone-Dependent Signaling. Chemical Reviews, Vol. 111 No. 1. Pages 68-85
  14. Daniel R. 2016. Quorum Sensing Proteins in Selected Microorganisms (Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Yersinia pestis): A Study in Bioinformatics. Journal of Chemical and Pharmaceutical Research, Vol. 8 No. 7. Pages 470-475
  15. Dhal PK, Sar P. 2014 Microbial Communities in Uranium Mine Tailings and Mine Water Sediment from Jaduguda U Mine, India: A Culture Independent Analysis. Journal of Environmental Science and Health, Vol. 49 No. 6. Pages 694-709
  16. Dopson M, Johnson DB. 2012. Biodiversity, Metabolism and Applications of Acidophilic Sulfur‐Metabolizing Microorganisms. Environmental Microbiology, Vol. 14 No. 10. Pages 2620-2631
  17. Fan Y, Lu Z, Chen J, Zhou Z, Wu G. 2002. Major Ecological and Environmental Problems and the Ecological Reconstruction Technologies of the Coal Mining Areas in China. Acta Ecologica Sinica, Vol. 23 No. 10. Pages 2144-2152
  18. Fors Y, Nilsson T, Risberg ED, Sandstrom M, Torssander P. 2008. Sulfur Accumulation in Pinewood (Pinus sylvestris) Induced by Bacteria in A Simulated Seabed Environment: Implications for Marine Archaeological Wood and Fossil Fuels. International Biodeterioration & Biodegradation, Vol. 62 No. 4. Pages 336-347
  19. Gaikwad RW, Gupta DV. 2008. Review on Removal of Heavy Metals From Acid Mine Drainage. Applied Ecology and Environmental Research, Vol. 6 No. 3. Pages 81-98
  20. Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. 2011. Quorum sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and AI-2 Quorum Sensing Pathways. Chemical Reviews, Vol. 111 No. 1. Pages 28-67
  21. Garcia-Gonzalo D, Pagan R. 2015. Influence of Environmental Factors on Bacterial Biofilm Formation in the Food Industry: A Review. Journal of Postdoctoral Research, Vol. 3 No. 6. Pages 3-13
  22. Ghoshal S, Hazra MK. 2015. H2CO3 → CO2 + H2O Decomposition in the Presence of H2O, HCOOH, CH3COOH, H2SO4 and HO2 Radical: Instability of the Gas-Phase H2CO3 Molecule in the Troposphere and Lower Stratosphere. RSC Advances, Vol. 5 No. 23. Pages 17623-17635
  23. Giri K, Mishra G, Pandey S, Verma PK, Kumar R, Bisht NS. 2014. Ecological Degradation in Northeastern Coal Fields: Margherita Assam. International Journal of Science, Environment and Technology, Vol. 3 No. 3. Pages 881-884
  24. Gonzalez-Toril E, Gomez F, Malki M, Amils R. 2006. The Isolation and Study of Acidophilic Microorganisms. In Methods in Microbiology, Vol. 35. Pages 471-510
  25. Gupta GN, Srivastava S, Khare SK, Prakash V. 2014. Extremophiles: An Overview of Microorganism from Extreme Environment. International Journal of Agriculture, Environment and Biotechnology, Vol. 7 No. 2. Pages 371-380
  26. Hadiwiyono. 2009. Quorum Sensing: Suatu Sistem Komunikasi Bakteri Fitopatogen, Peranannya pada Proses Infeksi, dan Peluangnya Sebagai Basis Pengembangan Strategi Baru dalam Pengendalian Penyakit Tumbuhan. Jurnal Perlindungan Tanaman Indonesia, Vol. 15 No. 2. Hal 45–54
  27. Hatar H, Rahim SA, Razi WM, Sahrani FK. 2013. Heavy Metals Content in Acid Mine Drainage at Abandoned and Active Mining Area. In AIP Conference Proceedings, Vol. 1571, No. 1. Pages 641-646
  28. Hawver LA, Jung SA, Ng WL. 2016. Specificity and Complexity in Bacterial Quorum-Sensing Systems. FEMS Microbiology Reviews, Vol. 40 No. 5. Pages 738-752
  29. Hedrich S, Johnson DB. 2013. Aerobic and Anaerobic Oxidation of Hydrogen by Acidophilic Bacteria. FEMS Microbiology Letters, Vol. 349 No. 1. Pages 40-45
  30. Heidel C, Tichomirowa M. 2011. Galena Oxidation Investigations on Oxygen and Sulphur Isotopes. Isotopes in Environmental and Health Studies, Vol. 47 No. 2. Pages 169-188
  31. Hoover RB, Pikuta EV, Bej AK, Marsic D, Whitman WB, Tang J, Krader P. 2003. Spirochaeta Americana sp. nov., A New Haloalkaliphilic, Obligately Anaerobic Spirochaete Isolated from Soda Mono Lake in California. International Journal of Systematic and Evolutionary Microbiology, Vol. 53 No. 3. Pages 815-821
  32. Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki KI. 2010. Ignavibacterium Album Gen. nov., sp. nov., a Moderately Thermophilic Anaerobic Bacterium Isolated from Microbial Mats at A Terrestrial Hot Spring and Proposal of Ignavibacteria Classis nov., for a Novel Lineage at the Periphery of Green Sulfur Bacteria. International Journal of Systematic and Evolutionary Microbiology, Vol. 60 No. 6. Pages 1376-1382
  33. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR. 2004. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature, Vol. 430 No. 1. Pages 68-71
  34. Ivanova K, Fernandes MM, Tzanov T. 2013. Current Advances on Bacterial Pathogenesis Inhibition and Treatment Strategies. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education 4. Formatex
  35. Khatoon H, Solanki P, Narayan M, Tewari L, Rai JPN. 2017. Role of Microbes in Organic Carbon Decomposition and Maintenance of Soil Ecosystem. International Journal of Chemical Studies, Vol. 5 No. 6. Pages 1648-1656
  36. Kimura N. 2014. Metagenomic Approaches to Understanding Phylogenetic Diversity in Quorum Sensing. Virulence, Vol. 5 No. 3. Pages 433-442
  37. Kurniawan A. 2016. Microorganism Communities Response of Ecological Changes in Post Tin Mining Ponds. Journal of Microbiology and Virology, Vol. 6 No. 1. Pages 17-26
  38. Kurniawan A. 2019. Diversitas Metagenom Bakteri di Danau Pascatambang Timah dengan Umur Berbeda. [Disertasi]. Fakultas Biologi. Universitas Jenderal Soedirman
  39. Lad RJ, Samant JS. 2015. Impact of Bauxite Mining on Soil: A Case Study of Bauxite Mines at Udgiri, Dist-Kolhapur, Maharashtra State, India. International Research Journal of Environment Sciences, Vol. 4 No. 2. Pages 77-83
  40. Lau JA, Lennon JT. 2012. Rapid Responses of Soil Microorganisms Improve Plant Fitness in Novel Environments. Proceedings of the National Academy of Sciences, Vol. 109 No. 35. Pages 14058-14062
  41. Lei Y, Zhang G, Ai C, Zhuang S. 2016. Bioleaching of Sphalerite by the Native Mesophilic Iron-Oxidizing Bacteria from a Lead-Zinc Tailing. Procedia Environmental Sciences, No. 31. Pages 554-559
  42. Li J, Zheng X, Guo X, Qi L, Dong X. 2014a. Characterization of an Archaeal Two-Component System That Regulates Methanogenesis in Methanosaeta Harundinacea. PloS ONE, Vol. 9 No. 4. pp e95502
  43. Li X, Kappler U, Jiang G, Bond PL. 2017. The Ecology of Acidophilic Microorganismsin the Corroding Concrete Sewer Environment. Frontiers in Microbiology, Vol. 8 No. 683. Pages 1-16
  44. Li Y, Tian X. 2012. Review: Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors, No. 12. Pages 2519-2538
  45. Li Y, Wen H, Chen L, Yin T. 2014b. Succession of Bacterial Community Structure and Diversity in Soil Along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China. PLoS ONE, Vol. 9 No. 12. pp e115024
  46. Lindsay MBJ, Wakeman KD, Rowe OF, Grail BM, Ptacek CJ, Blowes DW, Johnson DB. 2011. Microbiology and Geochemistry of Mine Tailings Amended With Organic Carbon for Passive Treatment of Pore Water. Geomicrobiology Journal, Vol. 28 No. 3. Pages 229-241
  47. Loerting T, Bernard J. 2010. Aqueous Carbonic Acid (H2CO3). ChemPhysChem, Vol. 11 No. 11. Pages 2305-2309
  48. Lowery CA, Dickerson TJ, Janda KD. 2008. Interspecies and Interkingdom Communication Mediated by Bacterial Quorum Sensing. Chemical Society Reviews, Vol. 37 No. 7. Pages 1337-1346
  49. Lozupone CA, Knight R. 2008. Species divergence and the measurement of Microbial Diversity. FEMS Microbiology Reviews, Vol. 32 No. 4. Pages 557-578
  50. Mangwani N, Dash HR, Chauhan A, Das S. 2012. Bacterial Quorum Sensing: Functional Features and Potential Applications in Biotechnology. Journal of Molecular Microbiology and Biotechnology, Vol. 22 No. 4. Pages 215-227
  51. Mejia ER, Ospina JD, Marquez MA, Morales AL. 2009. Oxidation of Chalcopyrite (CuFeS2) by Acidithiobacillus Ferrooxidans and a Mixed Culture of Acidithiobacillus ferrooxidans and Acidithiobacillus Thiooxidans Like Bacterium in Shake Flasks. In Advanced Materials Research, No. 71-73. Pages 385-388. Trans Tech Publications
  52. Mendez-Garcia C, Pelaez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. 2015. Microbial Diversity and Metabolic Networks in Acid Mine Drainage Habitats. Frontiers in Microbiology, Vol. 6 No. 475. Pages 1-17
  53. Mesa V, Gallego JLR, Gonzalez-Gil R, Lauga B, Sanchez J, Mendez-Garcia C, Pelaez AI. 2017. Bacterial, Archaeal, and Eukaryotic Diversity Across Distinct Microhabitats in an Acid Mine Drainage. Frontiers in Microbiology, No. 8. Pages 10-17
  54. Miller MB, Bassler BL. 2001. Quorum Sensing in Bacteria. Annual Reviews in Microbiology, Vol. 55 No. 1. Pages 165-199
  55. Miller MB, Bassler BL. 2001. Quorum Sensing in Bacteria. Annual Reviews in Microbiology, Vol. 55 No. 1. Pages 165-199
  56. Mohamed NM, Cicirelli EM, Kan J, Chen F, Fuqua C, Hill RT. 2008. Diversity and Quorum‐Sensing Signal Production of Proteobacteria Associated With Marine Sponges. Environmental Microbiology, Vol. 10 No. 1. Pages 75-86
  57. Moscatelli MC, Lagomarsino A, Marinari S, De Angelis P, Grego S. 2005. Soil Microbial Indices as Bioindicators of Environmental Changes in A Poplar Plantation. Ecological Indicators, Vol. 5 No. 3. Pages 171-179
  58. Mukherjee S, Bassler BL. 2009. Bacterial Quorum Sensing in Complex and Dynamically Changing Environments. Nature Review Microbiology, No. 3. Pages 1-12
  59. Ng W, Bassler BL. 2009. Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics, No. 43. Pages 197-222
  60. Niemi GJ, McDonald ME. 2004. Application of Ecological Indicators. Annual Review of Ecology, Evolution, and Systematics, No. 35. Pages 89-111
  61. Paerl HW, Dyble J, Moisander PH, Noble RT, Piehler MF, Pinckney JL, Steppe TF, Twomey L, Valdes LM. 2003. Microbial indicators of Aquatic Ecosystem Change: Current Applications to Eutrophication Studies. FEMS Microbiology Ecology, Vol. 46 No. 3. Pages 233-246
  62. Pereira GPR. 2010. Marine Bacteroidetes: Distribution Patterns and Role in the Degradation of Organic Matter. [Dissertation]. University of Bremen
  63. Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Krader P. 2009. Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. International Journal of Systematic and Evolutionary Microbiology, Vol. 59 No. 7. Pages 1798-1804
  64. Prasanna SNR. 2007. Soil pH and Its Role in Cyanobacterial Abundance and Diversity in Rice Field Soils. Applied Ecology and Environmental Research, Vol. 5 No. 2. Pages 103-113
  65. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, Van Der Gast CJ, Young JPW. 2007. The Role of Ecological Theory in Microbial Ecology. Nature Reviews Microbiology, Vol. 5 No. 5. Pages 384-392
  66. Quatrini R, Johnson DB. 2018. Microbiomes in Extremely Acidic Environments: Functionalities and Interactions That Allow Survival and Growth of Prokaryotes at Low pH. Current Opinion in Microbiology, No. 43. Pages 139-147
  67. Ramanathan AL, Singh G, Majumdar J, Samal AC, Chauhan R, Ranjan RK, Rajkumar K, Santra SC. 2008. A Study of Microbial Diversity and its Interaction with Nutrients in the Sediments of Sundarban Mangroves. Indian Journal of Marine Sciences, Vol. 37 No. 2. Pages 159-165
  68. Reading NC, Sperandio V. 2006. Quorum Sensing: the many Languages of Bacteria. FEMS Microbiology Letters, Vol. 254 No. 1. Pages 1-11
  69. Rukshana F, Butterly CR, Baldock JA, Tang C. 2011. Model Organic Compounds Differ in their Effects on pH Changes of Two Soils Differing in Initial pH. Biology and Fertility of Soils, Vol. 47 No. 1. Pages 51-62
  70. Rutherford ST, Bassler BL. 2012. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harbor Perspectives in Medicine, Vol. 2 No. 11. pp a012427
  71. Schauder S, Bassler BL. 2001. The languages of Bacteria. Genes & Development 15, No. 12. Pages 1468-1480
  72. Seeger C, Butler MK, Yee B, Mahajan M, Fuerst JA, Andersson SG. 2017. Tuwongella Immobilis Gen. Nov., sp. Nov., A Novel Non-Motile Bacterium Within The Phylum Planctomycetes. International Journal of Systematic and Evolutionary Microbiology, Vol. 67 No. 12. Pages 4923-4929
  73. Singh PK, Afzal I, Ravi S, Dhanesh S, Shivi S. 2013. A Study About Ecological Imbalance in Surguja (India) Coalfield Area Due To Mining. International Research Journal of Environment Sciences, Vol. 2 No. 4. Pages 10-14
  74. Smith JL, Fratamico PM, Novak JS. 2004. Quorum Sensing: A Primer for Food Microbiologists. Journal of food Protection, Vol. 67 No. 5. Pages 1053-1070
  75. Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaughan EE, De Vos WM. 2002. Cell to cell Communication by Autoinducing Peptides in Gram-Positive Bacteria. Antonie Van Leeuwenhoek, Vol. 81 No. 1-4. Pages 233-243
  76. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. 2011. Peptide Signaling in the Staphylococci. Chemical Reviews, Vol. 111 No. 1. Pages 117-151
  77. Thompson KJ, Simister RL, Hahn AS, Hallam SJ, Crowe SA. 2017. Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi. Frontiers in Microbiology, Vol. 8 No. 1212. Pages 1-16
  78. Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, et all. 2017. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels in Vitro and in Vivo. Frontiers in Neuroscience, No. 11. Pages 183
  79. Vogt JC, Abed RM, Albach DC, Palinska KA. 2018. Bacterial and Archaeal Diversity in Hypersaline Cyanobacterial Mats Along A Transect in The Intertidal Flats of the Sultanate of Oman. Microbial Ecology, Vol. 75 No. 2. Pages 331-347
  80. Vyas A, Pancholi A. 2009. Environmental Degradation Due To Mining in South Rajasthan: A Case Study of Nimbahera, Chittorgarh (India). Journal of Environmental Research and Development, Vol. 4 No. 2. Pages 405-412
  81. Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. 2019. Sulfur Oxidationin The Acidophilic Autotrophic Acidithiobacillus spp. Frontiers in Microbiology, Vol. 9 No. 3290. Pages 1-20
  82. Whitehead NA, Byers JT, Commander P, Corbett MJ, Coulthurst SJ, Everson L, et all. 2002. The Regulation of Virulence in Phytopathogenic Erwinia Species: Quorum Sensing, Antibiotics and Ecological Considerations. Antonie Van Leeuwenhoek, Vol. 81 No. 1-4. Pages 223-231
  83. Williams P, Winzer K, Chan WC, Camara M. 2007. Look Who's Talking: Communication and Quorum Sensing in the Bacterial World. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 362 No. 1483. Pages 1119-1134
  84. Williams P. 2007. Quorum Sensing, Communication and Cross-Kingdom Signalling in the Bacterial World. Microbiology, Vol. 153 No. 12. Pages 3923-3938
  85. Yli-Hemminki P, Jorgensen KS, Lehtoranta J. 2014. Iron–Manganese Concretions Sustaining Microbial Life in the Baltic Sea: the Structure of the Bacterial Community and Enrichments in Metal-Oxidizing Conditions. Geomicrobiology Journal, Vol. 31 No. 4. Pages 263-27

Last update:

No citation recorded.

Last update: 2025-01-02 12:29:58

No citation recorded.