skip to main content

Review Hidrolisis Biomasa Lignoselulosa Untuk Xilitol

Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia (LIPI), CibinongScience Center- Botanical Garden (CSC-BG),Jl.Raya Bogor Km 46 Cibinong Bogor 16911, Indonesia

Received: 8 Apr 2021; Revised: 20 Jul 2021; Accepted: 5 Aug 2021; Available online: 20 Aug 2021; Published: 1 Nov 2021.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Xilitol adalah gula alkohol dengan lima atom karbon. Gula ini digunakan sebagai pemanis industri pangan dan makanan, karena memiliki karakter yang menguntungkan. Meskipun xilitol diproduksi secara industri oleh reduksi kimia D-xilosa yang berasal dari hidrolisat hemiselulosa, metode produksi ini tidak ekonomis karena persyaratan untuk D-xilosa murni, suhu tinggi, dan tekanan tinggi. Oleh karena itu, produksi xilitol melalui pendekatan bioteknologi dengan bantuan mikroorganisme menjadi fokus sebagai metode yang ekonomis dan ramah lingkungan. Selain itu, untuk meningkatkan produksi bio-xilitol, strain mikroorganisme telah mengalami strategi modifikasi genetik. Review ini menjelaskan upaya produksi xilitol dari biomasa lignoselulasa, proses perlakuan biomasa, dan mikroorganisme yang berperan dalam fermentasi xilitol

Abstract

Xylitol is a sugar alcohol with five atoms of C. This sugar is used as a sweetener in the food industry and confectionary, because it has a favorable character. Although xylitol is produced industrially by the chemical reduction of D-xylose derived from hemicellulose hydrolyzate, this production method is not economical because of the requirements for pure D-xylose, high temperature, and high pressure. Therefore, the production of xylitol with a biotechnological approach with the help of microorganisms becomes the focus as an economical and environmentally friendly method. In addition, to increase bio-xylitol production, strains of microorganisms have undergone genetic modification strategies. This review article describes the latest advances made in the production of xylitol from lignocellulase biomass, biomass treatment processes, and microorganisms that play a role in xylitol fermentation.

 

Fulltext View|Download
Keywords: lignocellulose; pretreatment; fermentation; xylitol
Funding: LIPI

Article Metrics:

  1. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology advances, 29(6), 675-685. https://doi.org/10.1016/j.biotechadv.2011.05.005
  2. Ahmad, I., Shim, W. Y., Jeon, W. Y., Yoon, B. H., & Kim, J. H. (2012). Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess and Biosystems Engineering, 35(1), 199-204. https://doi.org/10.1007/s00449-011-0641-9
  3. Álvarez, C., Reyes‐Sosa, F. M., & Díez, B. (2016). Enzymatic hydrolysis of biomass from wood. Microbial biotechnology, 9(2), 149-156. https://doi.org/10.1111/1751-7915.12346
  4. An, S., Li, W., Liu, Q., Li, M., Ma, Q., Ma, L., & Chang, H. M. (2017). A two-stage pretreatment using acidic dioxane followed by dilute hydrochloric acid on sugar production from corn stover. RSC advances, 7(52), 32452-32460. https://doi.org/10.1039/C7RA05280D
  5. An, S., Li, W., Liu, Q., Xia, Y., Zhang, T., Huang, F., ... & Chen, L. (2019). Combined dilute hydrochloric acid and alkaline wet oxidation pretreatment to improve sugar recovery of corn stover. Bioresource technology, 271, 283-288. https://doi.org/10.1016/j.biortech. 2018.09.126
  6. Antonopoulou, G., Vayenas, D., & Lyberatos, G. (2016). Ethanol and hydrogen production from sunflower straw: The effect of pretreatment on the whole slurry fermentation. Biochemical engineering journal, 116, 65-74
  7. Antunes, F. A. F., dos Santos, J. C., da Cunha, M. A. A., Brumano, L. P., dos Santos Milessi, T. S., Terán-Hilares, R., ... & da Silva, S. S. (2017). Biotechnological production of xylitol from biomass. In Production of Platform Chemicals from Sustainable Resources (pp. 311-342). Springer, Singapore. https://doi.org/10.1007/978-981-104172-3_10
  8. Arruda, P. V., & Felipe, M. G. (2009). Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Current microbiology, 58(3), 274-278
  9. Bai, X., Lant, P. A., Jensen, P. D., Astals, S., & Pratt, S. (2016). Enhanced methane production from algal digestion using free nitrous acid pre-treatment. Renewable Energy, 88, 383-390
  10. Battista, F., Mancini, G., Ruggeri, B., & Fino, D. (2016). Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products. Renewable Energy, 88, 401-407
  11. Berlin, A. (2013). No barriers to cellulose breakdown. Science, 342(6165), 1454-1456
  12. Cadete, R. M., Melo-Cheab, M. A., Viana, A. L., Oliveira, E. S., Fonseca, C., & Rosa, C. A. (2016). The yeast Scheffersomyces amazonensis is an efficient xylitol producer. World Journal of Microbiology and Biotechnology, 32(12), 1-5
  13. Canilha, L., Rodrigues, R. C. L. B., Antunes, F. A. F., Chandel, A. K., Milessi, T. S. D. S., Felipe, M. D. G. A., & Silva, S. D. (2013). Bioconversion of hemicellulose from sugarcane biomass into sustainable products. Sustainable degradation of lignocellulosic biomass-Techniques, applications and commercialization, 1, 15-45
  14. Canilha, L., Carvalho, W., Giulietti, M., Felipe, M. D. G. A., & Almeida E Silva, J. B. (2008). Clarification of a wheat straw‐derived medium with ion‐exchange resins for xylitol crystallization. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(5), 715-721. https://doi.org/10.1002/jctb.1861
  15. Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource technology, 98(10), 1947-1950
  16. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035
  17. Chen, X. (2012). Development of effective pretreatment and bioconversion systems for converting organic residuals to bioenergy. University of California, Davis
  18. Cheng, H., Lv, J., Wang, H., Wang, B., Li, Z., & Deng, Z. (2014). Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Applied microbiology and biotechnology, 98(8), 3539-3552. https://doi.org/10.1007/s00253-013-5501-x
  19. Dutta, S., & Wu, K. C. W. (2014). Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green chemistry, 16(11), 4615-4626
  20. Faneer, K. A., Rohani, R., & Mohammad, A. W. (2017). Polyethersulfone/pluronic F127 blended nanofiltration membranes for xylitol purification. Malaysian Journal of Analytical Sciences, 21(1), 221-230. https://doi.org/10.17576/mjas-2017-2101-26
  21. Floudas, D., Bentzer, J., Ahrén, D., Johansson, T., Persson, P., & Tunlid, A. (2020). Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. The ISME journal, 14(8), 2046-2059. https://doi.org/10.1038/s41396-020-0667-6
  22. Granström, T. B., Izumori, K., & Leisola, M. (2007). A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Applied microbiology and biotechnology, 74(2), 273-276. https://doi.org/10.1007/s00253-006-0760-4
  23. Hermiati, E., Laksana, R. P. B., Fatriasari, W., Kholida, L. N., Thontowi, A., Arnieyanto, D. R., ... & Watanabe, T. (2020). Microwave-assisted acid pretreatment for enhancing enzymatic saccharification of sugarcane trash. Biomass Conversion and Biorefinery, 1-18
  24. Hermiati, E., Oktaviani, M., Ermawar, R. A., Laksana, R. P. B., Kholida, L. N., Thontowi, A., ... & Watanabe, T. (2020). Optimization of Xylose Production from Sugarcane Trash by Microwave-Maleic Acid Hydrolysis. Reaktor, 20(2), 81-88
  25. Hermiati E., D. Mangunwidjaja, C.T. Sunarti, O. Suparno, B. Prasetya 2010. Pemanfaatan Biomassa Lignoselulosa Ampas Tebu Untuk Produksi Bioetanol. Jurnal Litbang Pertanian, 29(4)
  26. Hidayatullah, I. M., T. Setiadi, M. Tri, A. Penia, R. Boopathy. 2020. Xylanase inhibition by the derivatives of lignocellulosic material. Bioresource technology, 300, 122740. https://doi.org/10.1016/j.biortech.2020.122740
  27. Hou-Rui, Z. (2012). Key drivers influencing the large scale production of xylitol. In D-Xylitol (pp. 267-289). Springer, Berlin, Heidelberg
  28. Hu, J., & Saddler, J. N. (2018). Why does GH10 xylanase have better performance than GH11 xylanase for the deconstruction of pretreated biomass?. Biomass and Bioenergy, 110, 13-16. https://doi.org/10.1016/j.biombioe.2018.01.007
  29. Jain, T., & Grover, K. (2015). Sweeteners in human nutrition. International Journal of Health Sciences and Research, 5(5), 439-451
  30. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1(2), 119-134. https://doi.org/10.1002/bbb.4
  31. Junyapate, K., Jindamorakot, S., & Limtong, S. (2014). Yamadazyma ubonensis fa, sp. nov., a novel xylitol-producing yeast species isolated in Thailand. Antonie van Leeuwenhoek, 105(3), 471-480. https://doi.org/10.1007/s10482-013-0098-8
  32. Kitamura, Y., Shobu, R., Matsuura, H., Jyo, A., & Ihara, T. (2020). Xylitol Separation from a Polyol Mixture Using Lanthanide Ion-loaded Resins. Analytical Sciences, 19N032. https://doi.org/10.2116/analsci.19N032
  33. Ko, C. H., Chiu, P. C., Yang, C. L., & Chang, K. H. (2008). Xylitol conversion by fermentation using five yeast strains and polyelectrolyte-assisted ultrafiltration. Biotechnology letters, 30(1), 81-86. https://doi.org/10.1007/s10529-007-9507
  34. Kresnowati, M. T. A. P., Setiadi, T., Tantra, T. M., & Rusdi, D. (2016). Microbial production of xylitol from oil palm empty fruit bunch hydrolysate: Effects of inoculum and pH. Journal of Engineering and Technological Sciences, 48(5), 523-533
  35. Krumova, E., Kostadinova, N., Miteva‐Staleva, J., Stoyancheva, G., Spassova, B., Abrashev, R., & Angelova, M. (2018). Potential of ligninolytic enzymatic complex produced by white‐rot fungi from genus Trametes isolated from Bulgarian forest soil. Engineering in Life Sciences, 18(9), 692-701. https://doi.org/10.1002/elsc.201800055
  36. Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel processing technology, 199, 106244
  37. Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, 90, 877-891. https://doi.org/10. 1016/j.rser.2018.03.111
  38. Kumar, V., Sandhu, P. P., Ahluwalia, V., Mishra, B. B., & Yadav, S. K. (2019). Improved upstream processing for detoxification and recovery of xylitol produced from corncob. Bioresource technology, 291, 121931
  39. Kuswytasari, N. D., Shovitri, M., & Zulaika, E. (2015). Ligninolytic Enzymes Produced by Gliomastix sp. in an Organic Waste Medium. IPTEK the Journal for Technology and Science, 26(1)
  40. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and microbial technology, 24(3-4), 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  41. Lee, J. K., Koo, B. S., & Kim, S. Y. (2003). Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Applied and environmental microbiology, 69(10), 6179-6188. https://doi.org/10.1128/AEM.69.10.6179-6188.2003
  42. Liu, Q., Li, W., Ma, Q., An, S., Li, M., Jameel, H., & Chang, H. M. (2016). Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process. Bioresource technology, 211, 435-442. https://doi.org/10. 1016/j.biortech.2016.03.131
  43. López-Linares, J. C., Romero, I., Cara, C., Castro, E., & Mussatto, S. I. (2018). Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource technology, 247, 736-743. https://doi.org/10.1016/j.biortech.2017.09.139
  44. Madadi, M., & Abbas, A. (2017). Lignin degradation by fungal pretreatment: a review. J. Plant Pathol. Microbiol, 8(2), 1-6. https://doi.org/10.4172/2157-7471.1000398
  45. Misra, S., Raghuwanshi, S., Gupta, P., Dutt, K., & Saxena, R. K. (2012). Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Antonie Van Leeuwenhoek, 101(2), 393-402. https://doi.org/10.1007/s10482-011-9646-2
  46. Mukherji, R., Joshi-Navare, K., & Prabhune, A. (2013). Crystalline Xylitol Production by a Novel Yeast, Pichia caribbica (HQ222812), and Its Application for Quorum Sensing Inhibition in Gram-Negative Marker Strain C hromobacterium violaceum CV026. Applied biochemistry and biotechnology, 169(6), 1753-1763
  47. Müller, V. (2001). Bacterial fermentation. e LS
  48. Mun, L. W., Rafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2016). Purification of bioxylitol by liquid–liquid extraction from enzymatic reaction mixture. Separation Science and Technology, 51(14), 2369-2377. https://doi.org/10.1080/01496395.2016.1203335
  49. Nges, I. A., Li, C., Wang, B., Xiao, L., Yi, Z., & Liu, J. (2016). Physio-chemical pretreatments for improved methane potential of Miscanthus lutarioriparius. Fuel, 166, 29-35. https://doi.org/10.1016/j.fuel.2015.10.108
  50. Ninomiya, K., Kamide, K., Takahashi, K., & Shimizu, N. (2012). Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresource technology, 103(1), 259-265. https://doi.org/10.1016/j. biotech..10.019
  51. Oh, E. J., Ha, S. J., Kim, S. R., Lee, W. H., Galazka, J. M., Cate, J. H., & Jin, Y. S. (2013). Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabolic engineering, 15, 226-234. https://doi.org/10.1016/j.ymben.2012.09.003
  52. Oktaviani, M., Hermiati, E., Thontowi, A., Laksana, R. P. B., Kholida, L. N., Andriani, A., & Mangunwardoyo, W. (2019, March). Production of xylose, glucose, and other products from tropical lignocellulose biomass by using maleic acid pretreatment. In IOP Conference Series: Earth and Environmental Science (Vol. 251, No. 1, p. 012013). IOP Publishing
  53. Martiniano, S. E., Chandel, A. K., Soares, L. C., Pagnocca, F. C., & da Silva, S. S. (2013). Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. 3 Biotech, 3(5), 345-352. https://doi.org/10.1007/s13205-013-0145-1
  54. Pal, S., Mondal, A. K., & Sahoo, D. K. (2016). Molecular strategies for enhancing microbial production of xylitol. Process Biochemistry, 51(7), 809-819
  55. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource technology, 74(1), 25-33. https://doi.org/10.1016/S0960-8524(99)00161-3
  56. Rafiqul, I. S. M., & Sakinah, A. M. (2012). Bioproduction of xylitol by enzyme technology and future prospects. International Food Research Journal, 19(2), 405
  57. Rao, R. S., Jyothi, C. P., Prakasham, R. S., Sarma, P. N., & Rao, L. V. (2006). Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresource technology, 97(15), 1974-1978. https://doi.org/10.1016/j.biortech. 2005.08.015
  58. Rao, L. V., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource technology, 213, 299-310. https://doi.org/10.1016/j.biortech.2016.04.092
  59. Saputra, H., Thontowi, A., Kholida, L. N., & Kanti, A. (2020, February). Efficiency of Xylitol Production from Meyerozyma caribbica Y67 with Cell Initiation and Volume Fermentation. In IOP Conference Series: Earth and Environmental Science (Vol. 439, No. 1, p. 012032). IOP Publishing
  60. Sarmad, S., Xie, Y., Mikkola, J. P., & Ji, X. (2017). Screening of deep eutectic solvents (DESs) as green CO 2 sorbents: from solubility to viscosity. New Journal of Chemistry, 41(1), 290-301. https://doi.org/10.1039/C6NJ03140D
  61. Sena, L. M., Morais, C. G., Lopes, M. R., Santos, R. O., Uetanabaro, A. P., Morais, P. B., ... & Rosa, C. A. (2017). d-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie van Leeuwenhoek, 110(1), 53-67
  62. Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass–An overview. Bioresource technology, 199, 76-82. https://doi.org/10.1016/j.biortech.2015.08.030
  63. Shahabazuddin, M., Chandra, T. S., Meena, S., Sukumaran, R. K., Shetty, N. P., & Mudliar, S. N. (2018). Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource technology, 263, 199-206. https://doi.org/10.1016/j.biortech.2018.04.027
  64. Su, Y., Xian, H., Shi, S., Zhang, C., Manik, S. N., Mao, J., ... & Liu, H. (2016). Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk. BMC biotechnology, 16(1), 1-9. https://doi.org/10.1186/s12896-016-0311-8
  65. Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource technology, 199, 49-58. https://doi.org/10.1016/j.biortech.2015.08.061
  66. Tao, X., Li, J., Zhang, P., Nabi, M., Jin, S., Li, F., ... & Ye, J. (2017). Reinforced acid-pretreatment of Triarrhena lutarioriparia to accelerate its enzymatic hydrolysis. International Journal of Hydrogen Energy, 42(29), 18301-18308. https://doi.org/Doi: 10.1016/j.ijhydene.2017.04.149
  67. Thontowi, A., Mayangsari, W., Kholida, L. N., Kanti, A., Wardani, A. K., & Hermiati, E. (2020, February). Evaluation of Addition The Activated Charcoals and pH Adjustment in The Treatment of Lignocellulosic Hydrolisates for Xylitol Production. In IOP Conference Series: Earth and Environmental Science (Vol. 439, No. 1, p. 012023). IOP Publishing. https://doi.org/10.1088/1755-1315/439/1/012023
  68. Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H. H., & Chisti, Y. (2005). A model of xylitol production by the yeast Candida mogii. Bioprocess and biosystems engineering, 28(3), 175-183. https://doi.org/10.1007/s00449-005-0025-0
  69. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2015). Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Critical reviews in food science and nutrition, 55(11), 1514-1528
  70. Vajzovic, A., Bura, R., Kohlmeier, K., & Doty, S. L. (2012). Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors. Journal of Industrial Microbiology and Biotechnology, 39(10), 1453-1463. https://doi.org/10.1007 /s10295- 012-1154-5
  71. Wan, C., Zhou, Y., & Li, Y. (2011). Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource technology, 102(10), 6254-6259. https://doi.org/10.1016/j.biortech. 2011.02.075
  72. Wei, J., Yuan, Q., Wang, T., & Wang, L. (2010). Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers of Chemical Engineering in China, 4(1), 57-64. https://doi.org/10.1007/s11705-009-0295-1
  73. Wen, Z., Wu, M., Lin, Y., Yang, L., Lin, J., & Cen, P. (2014). Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microbial cell factories, 13(1), 1-11. https://doi.org/10.1186/s12934-014-009
  74. Widiastuti, H., & Wulaningtyas, A. (2008). Activity of ligninolytic enzymes during growth and fruiting body development of white rot fungi Omphalina sp. and Pleurotus ostreatus. HAYATI Journal of Biosciences, 15(4), 140-144. https://doi.org/10.4308/hjb.15.4.140
  75. Wyman, C. E., Decker, S. R., Himmel, M. E., Brady, J. W., Skopec, C. E., & Viikari, L. (2005). Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural diversity and functional versatility, 1, 1023-1062
  76. Yang, C. X., Wang, T., Gao, L. N., Yin, H. J., & Lü, X. (2017). Isolation, identification and characterization of lignin‐degrading bacteria from Qinling, China. Journal of applied microbiology, 123(6), 1447-1460. https://doi.org/10.1111/jam.13562
  77. Zhang, C., Zong, H., Zhuge, B., Lu, X., Fang, H., & Zhuge, J. (2015). Production of xylitol from D-xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Applied biochemistry and biotechnology, 176(5), 1511-1527. https://doi.org/10.1007/s12010-015-1661-8
  78. Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part II: Fundamentals of different pre‐treatments to increase the enzymatic digestibility of lignocellulose. Biofuels, Bioproducts and Biorefining, 6(5), 561-579. https://doi.org/10.1002/bbb.1350

Last update:

No citation recorded.

Last update: 2024-03-27 19:03:30

No citation recorded.