skip to main content

Review Tentang Kemampuan Ikan Ekstremofil Untuk Hidup Di Perairan Asam Dan Terkontaminasi Logam Berat Pascapenambangan Timah

1Jurusan Akuakultur, Fakultas Pertanian, Perikanan, dan Biologi, Universitas Bangka Belitung, Indonesia

2Jurusan Biologi, Fakultas Sains dan Teknologi, International Women University, Indonesia

Received: 7 Aug 2021; Revised: 24 Aug 2021; Accepted: 2 Sep 2021; Published: 1 Nov 2021; Available online: 6 Sep 2021.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Ikan ekstremofil (extremophile fishes) telah muncul sebagai model untuk kajian biologi integratif. Ikan-ikan ini tidak hanya memberikan wawasan tentang proses biologis, biokimia, fisiologis, dan perkembangan kehidupan organisme, tetapi juga penjelasan tentang kapasitas dan keterbatasan hidup untuk beradaptasi dan bertahan hidup dalam kondisi lingkungan ekstrem. Beberapa ikan ekstremofil dapat bertahan hidup di bawah kondisi habitat yang dianggap tidak ramah bagi sebagian besar ikan karena adanya stresor lingkungan. Ikan ekstrofil sering mengembangkan mekanisme adaptasi yang kompleks untuk mengatasi faktor stresor. Salah satu lingkungan yang ekstrim adalah kolong bekas penambangan timah yang terletak di Provinsi Kepulauan Bangka Belitung sebagai penghasil timah. Beberapa ikan yang ditemukan dapat beradaptasi dengan kondisi ekstrem habitat ini; pH rendah, oksigen terlarut rendah, nutrisi rendah, dan kontaminasi logam berat tinggi. Habitat ekstrem yang terjadi secara alami dapat dianggap sebagai penelitian evolusioner yang memungkinkan mempelajari kemampuan ikan untuk beradaptasi dan bertahan hidup terhadap kondisi ekologi yang berubah. Telaah artikel ini bertujuan untuk memberikan gambaran tentang karakteristik perairan kolong bekas penambangan timah dan fisiologi ikan ekstremofil ditinjau dari modifikasi fisikokimia dan biokimianya. Hasil kajian makalah penelitian menunjukkan beberapa jenis ikan seperti Aplocheilus sp., Betta sp., Gambusia sp., Rasbora sp., Belontia sp., Brevibora sp., Oryzias sp., Puntius sp., Anabas sp., dan Trichogaster sp. mampu toleran pada kondisi ekstrem perairan kolong pascapenambangan timah yang terbengkalai. Kemampuan ikan untuk beradaptasi dan bertahan hidup di lingkungan ekstrem seperti perairan kolong pascapenambangan timah didukung oleh kemampuan untuk melakukan penundaan penetasan telur dengan memasuki fase diapause. Kemampuan ikan lainnya adalah pengaturan mekanisme osmoregulasi atau homeostatis tubuh terhadap kondisi pH asam maupun kontaminasi logam berat di lingkungan tersebut.

ABSTRACT

Extremophile fishes have emerged as veritable models for investigations in integrative biology. These fishes not only provide insights into biological, biochemical, physiological, and developmental processes of organism’ life, but also the explanation of life’s capacity and limitation to adapt and survive in the extreme environmental conditions. Some extremophile fishes can survive under habitat conditions considered inhospitable for most fishes due to the presence of the environment stressors. The extremophile fishes have often evolved complex adaptation mechanisms to cope the stressor factors. One of the extreme environments is abandoned tin mining ponds, located in Bangka Belitung Archipelago Province as a tin producer. Some fishes have found can adapt to the extreme conditions of this habitat; low pH, low dissolved oxygen, low nutrition, and highly heavy metals contamination. Naturally occurring extreme habitat can be regarded as evolutionary researches that allow studying the ability of fishes to adapt and survive to altered ecological conditions. This paper review aimed to provide an overview about water characteristics of abandoned tin mining pits and physiology of extremophile fishes in terms of modification of physicochemical and biochemical. The result of research papers review indicated some species of fish such as Aplocheilus sp., Betta sp., Gambusia sp., Rasbora sp., Belontia sp., Brevibora sp., Oryzias sp., Puntius sp., Anabas sp., and Trichogaster sp. able to tolerate to the extreme conditions of abandoned tin mining pit waters. The ability of fish to adapt and survive in extreme environments such as abandoned tin mining pit waters is supported by the ability to delay hatching of eggs by entering the diapause phase. Another ability is the regulation of the body's osmoregulation or homeostatic mechanism against acidic pH conditions and heavy metal contamination in the environment.

Fulltext View|Download
Keywords: abandoned tin mining pits; acid waters; adaptation mechanisms; extremophile fishes; heavy metals

Article Metrics:

Article Info
Section: Research Article
Language : EN
Statistics:
  1. Amaral-Zettler, L.A. 2013. Eukaryotic diversity at pH extremes. Frontiers in Microbiology 3(441): 1-17
  2. Arora, N.K., Panosyan, H. 2019. Extremophiles: applications and roles in environmental sustainability. Environmental Sustainability 2(2019): 217-218
  3. Ashraf MA, Maah MJ, Yusoff I. 2011. Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology 8(2): 401-416
  4. Ashraf MA, Maah MJ, Yusoff I. 2012. Speciation of heavy metals in the sediments of former tin mining catchment. Iranian Journal of Science and Technology 36(A2): 163-180
  5. Asriani, E., Kurniawan, A. 2015. Determinasi nilai pH untuk memprediksi kualitas perairan pada kolong pascatambang timah di Pulau Bangka. Journal of Aquatropica Asia 1(2): 1-10
  6. Baker-Austin, C., Dopson, M. 2007. Life in acid: pH homeostasis in acidophiles. Trends in Microbiology 15(4): 165-171
  7. Barman, D., Jha, D.K., Bhattacharjee, K., Singh, R.P., Manchanda, G., Maurya, I.K., Wei, Y. 2020. Metallotolerant bacteria: insights into bacteria thriving in metal-contaminated areas. Microbial versatility in varied environments: microbes in sensitive environments. Springer. Singapore, 135-64
  8. Berois, N., Arezo, M.J., De Sa, R.O. 2014. The Neotropical Genus Austrolebias: an emerging model of annual killifishes. Cell & Developmental Biology 3(2): 1000136
  9. Bhowal, S.S., Chakraborty, R. 2015. Microbial diversity of acidophilic heterotrophic bacteria: an overview. Biodiversity, Conservation and Sustainable Development. Ed.: Prithwiraj Jha. New Academic Publishers, New Delhi, 2015. ISBN: 9788186772751
  10. Bigham, J.M., Nordstrom, D.K. 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in Mineralogy & Geochemistry 40(1): 351-403
  11. Casner, A.M., Fackelman, H.C., Degtyareva, O., Kight, S.L. 2016. Do female western mosquitofish, Gambusia affinis, prefer ornaments that males lack?. Ethology 122(7): 561-570
  12. Celebi, E.E., Oncel, M.S. 2016. Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey). Journal of African Earth Sciences 2016(124): 487-496
  13. Claassens, S., Van Rensburg, P.J.J., Maboeta, M.S., Van Rensburg, L. 2008. Soil microbial community function and structure in a post-mining chronosequence. Water, Air, & Soil Pollution 194(1-4): 315-329
  14. Claiborne, J.B., Edwards, S.L., Morrison‐Shetlar, A.I. 2002. Acid–base regulation in fishes: cellular and molecular mechanisms. Journal of Experimental Zoology 293(3): 302-319
  15. Culumber, Z.W., Hopper, G.W., Barts, N., Passow, C.N., Morgan, S., Brown, A., …., Tobler, M. 2016. Habitat use by two extremophile, highly endemic, and critically endangered fish species (Gambusia eurystoma and Poecilia sulphuraria; Poeciliidae). Aquatic Conservation: Marine and Freshwater Ecosystems, 26(6): 1155-1167
  16. Daniel, V.N., Chudusu, E.S., Chup, J.A., Pius, N.D. 2014. Variations of heavy metals in agricultural soils irrigated with tin water in Heipang District of Barkin Ladi, Plateau State, Nigeria. International Journal of Science and Technology 3(5): 255-263
  17. De Saedeleer, V., Cappuyns, V., De Cooman, W., Swennen, R. 2010. Influence of major elements on heavy metal composition of river sediments. Geologica Belgica 13(3): 257-268
  18. Dolfi, L., Ripa, R. Cellerino A. 2014. Transition to annual life history coincides with reduction in cell cycle speed during early cleavage in three independent clades of annual killifish. EvoDevo 5(32): 1-9
  19. Dominguez-Castanedo, O., Mosqueda-Cabrera, M.A., Valdesalici, S. 2013. First observations of annualism in Millerichthys robustus (Cyprinodontiformes: Rivulidae). Ichthyological Exploration of Freshwaters 24(1): 15-20
  20. Dopson, M., Johnson, D.B. 2012. Biodiversity, metabolism and applications of acidophilic sulfur‐metabolizing microorganisms. Environmental Microbiology 14(10): 2620-2631
  21. Duarte, R.M., Ferreira, M.S., Wood, C.M., Val, A.L. 2013. Effect of low pH exposure on Na+ regulation in two cichlid fish species of the Amazon. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 166(3): 441-448
  22. Evans, D.H. 2011. Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiologica 202(3): 349-359
  23. Evans, D.H., Piermarini, P.M., Choe, K.P. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews 85(1): 97-177
  24. Fashola, M.O., Ngole-Jeme, V.M., Babalola, O.O. 2015. Diversity of acidophilic bacteria and archaea and their roles in bioremediation of acid mine drainage. British Microbiology Research Journal 8(3): 443-456
  25. Fernandes, L., Nayak, G.N., Ilangovan, D., Borole, D.V. 2011. Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuarine, Coastal and Shelf Science 91(3): 388-399
  26. Furness, A.I. 2015. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biological Reviews 91(3): 796-812
  27. Furness, A.I., Reznick, D.N., Tatarenkov, A., Avise, J.C. 2018. The evolution of diapause in Rivulus (Laimosemion). Zoological Journal of the Linnean Society 2018(20): 1-18
  28. Gaikwad, R.W., Gupta, D.V. 2008. Review on removal of heavy metals from acid mine drainage. Applied Ecology and Environmental Research 6(3): 81-98
  29. Garcia, D., Loureiro, M., Tassino, B. 2008. Reproductive behavior in the annual fish Austrolebias reicherti Loureiro & García 2004 (Cyprinodontiformes: Rivulidae). Neotropical Ichthyology 6(2): 243-248
  30. Gonzalez-Toril, E., Gomez, F., Malki, M., Amils, R. 2006. The Isolation and study of acidophilic microorganisms. In Methods in Microbiology Vol. 35: 471-510. Academic Press
  31. Grum-Grzhimaylo, A.A., Georgieva, M.L., Debets, A.J., Bilanenko, E.N. 2013. Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin?. IMA Fungus 4(2): 213-228
  32. Gupta, G.N., Srivastava, S., Khare, S.K., Prakash, V. 2014. Extremophiles: an overview of microorganism from extreme environment. International Journal of Agriculture, Environment and Biotechnology 7(2): 371-380
  33. Gupta, K.J., Zabalza, A., Van Dongen, J.T. 2009. Regulation of respiration when the oxygen availability changes. Physiologia Plantarum 137(4): 383-391
  34. Hashim, M., Nayan, N., Saleh, Y., Mahat, H., Shiang, W. F. 2018. Water quality assessment of former tin mining lakes for recreational purposes in Ipoh City, Perak, Malaysia. Indonesian Journal of Geography 50(1): 25-33
  35. Hatar, H., Rahim, S.A., Razi, W.M., Sahrani, F.K. 2013. Heavy metals content in acid mine drainage at abandoned and active mining area. In AIP Conference Proceedings Vol. 1571, No. 1: 641-646. AIP
  36. Heidel, C., Tichomirowa, M. 2011. Galena oxidation investigations on oxygen and sulphur isotopes. Isotopes in Environmental and Health Studies 47(2): 169-188
  37. Henny C. 2011. Bioakumulasi beberapa logam pada ikan di kolong bekas tambang timah di Pulau Bangka. Limnotek 18(1): 83-95
  38. Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., ...., Hirose, S. 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 284(5): R1199-R1212
  39. Hiroi, J., McCormick, S.D., Ohtani-Kaneko, R., Kaneko, T. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl-cotransporter and CFTR anion channel. Journal of Experimental Biology 208(11): 2023-2036
  40. Horikoshi, K. 2016. Alkaliphiles. In Extremophiles: 53-78. Springer
  41. Huang HH. 2016. The Eh-pH diagram and its advances. Metals 6(23): 1-30
  42. Huang, J.Z., Ge, X., Wang, D. 2012. Distribution of heavy metals in the water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume. Journal Environmental Science 24(12): 2051-2019
  43. Hwang, P.P., Lee, T.H., Lin, L.Y. 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301(1): R28-R47
  44. Igiri, B.E., Okoduwa, S.I., Idoko, G.O., Akabuogu, E.P., Adeyi, A.O., Ejiogu, I.K. 2018. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of Toxicology 2018: 1-16
  45. Irawan RR, Sumarwan U, Suhardjo B, Djohar S. 2014. Strategic model of tin mining industry in Indonesia (case study of Bangka Belitung Province). International Journal of Business and Management Review 2(3): 48-58
  46. Jiang, Y.Y., Kong, D.X., Qin, T., Li, X., Caetano-Anolles, G., Zhang, H.Y. 2012. The impact of oxygen on metabolic evolution: a chemoinformatic investigation. PLoS Computational Biology 8(3): e1002426
  47. Johnson D.B., Hallberg K.B. 2008. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Advances in Microbial Physiology 54(2008): 201-255
  48. Kurniawan A. 2016. Microorganism communities response of ecological changes in post tin mining ponds. Journal of Microbiology and Virology 6(1): 17-26
  49. Kurniawan, A. 2017. Chronosequence effect of post tin mining ponds to metals residu and microecosystem change. Omni-Akuatika 13(1): 60-65
  50. Kurniawan A. 2019. Diversitas metagenom bakteri di danau pascatambang timah dengan umur berbeda. [Disertasi]. Fakultas Biologi. Universitas Jenderal Soedirman. 103p
  51. Kurniawan, A. 2020. The metal oxides of abandoned tin mining pit waters as an indicator for bacterial diversity. Aquaculture, Aquarium, Conservation & Legislation Bioflux 13(5): 2982-2992
  52. Kurniawan, A., Kurniawan, A. 2012. Analisis variasi genetik ikan di kolong pascatambang timah dengan metode elektroforesis. Akuatik: Jurnal Sumberdaya Perairan 6(2): 6-10
  53. Kurniawan, A., Oedjijono., Tamad., Sulaeman, U. 2019. The pattern of heavy metals distribution in time chronosequence of ex-tin mining ponds in Bangka Regency, Indonesia. Indonesian Journal of Chemistry 19(1): 254-261
  54. Kurniawan, A., Prasetiyono, E., Syaputra, D. 2020. Analisis korelasi parameter kualitas perairan kolong pascatambang timah dengan umur berbeda. Samakia: Jurnal Ilmu Perikanan 11(2): 91-100
  55. Lindeque, J.Z., Levanets, O., Louw, R., Van Der Westhuizen, F.H. 2010. The involvement of metallothioneins in mitochondrial function and disease. Current Protein and Peptide Science 11(4): 292-309
  56. Lindeque, J.Z., Levanets, O., Louw, R., Van Der Westhuizen, F.H. 2010. The involvement of metallothioneins in mitochondrial function and disease. Current Protein and Peptide Science 11(4): 292-309
  57. Lindeque, J.Z., Levanets, O., Louw, R., Van Der Westhuizen, F.H. 2010. The involvement of metallothioneins in mitochondrial function and disease. Current Protein and Peptide Science 11(4): 292-309
  58. Liu, Y., Wu, H., Kou, L., Liu, X., Zhang, J., Guo, Y., Ma, E. 2014. Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress. PloS ONE 9(11): e112759
  59. Lozupone, C.A., Knight, R. 2008. Species divergence and the measurement of microbial diversity. FEMS Microbiology Reviews 32(4): 557-578
  60. Magan N., 2007. Fungi in Extreme Environments. In: Kubicek C.P. and Druzhinina I.S. (Eds.) Environmental and Microbial Relationships, 2nd Edition, The Micota IV. Springer-Verlag, Berlin, 85-100
  61. Martinez-Espinosa, R.M. 2020. Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments. International Journal of Molecular Sciences 21(12): 1-19
  62. Mejia, E.R., Ospina, J.D., Marquez, M.A., Morales, A.L. 2009. Oxidation of chalcopyrite (CuFeS2) by Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans like bacterium in shake flasks. In Advanced Materials Research 2009(71-73): 385-388. Trans Tech Publications. Switzerland
  63. Mendez, M.O., Neilson, J.W., Maier, R.M. 2008. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Applied and Environmental Microbiology 74(12): 3899-3907
  64. Mergeay, M. 2006. Metallophiles and acidophiles in metal-rich environments, p 1–19. Extremophiles (life under extreme environmental conditions) in Encyclopedia of life support systems (EOLSS). EOLSS Publishers, Oxford, United Kingdom
  65. Morris, R.L., Schmidt, T.M. 2013. Shallow breathing: bacterial life at low O2. Nature Reviews Microbiology 11(3): 205-212
  66. Moscatelli, M.C., Lagomarsino, A., Marinari, S., De Angelis, P., Grego, S. 2005. Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecological Indicators 5(3): 171-179
  67. Mustikasari, D., Suryaningsih, S., Nuryanto, A. 2020a. Morphological variation of blue panchax (Aplocheilus panchax) lives in different habitat assessed using truss morphometric. Biosaintifika: Journal of Biology & Biology Education 12(3): 399-407
  68. Mustikasari, D., Nuryanto, A., Suryaningsih, S. 2020b. The presence of blue panchax (Aplocheilus panchax) in the waters, contaminated by heavy metals, of the abandoned tin mining pits of different age. Aquaculture, Aquarium, Conservation & Legislation Bioflux 13(5): 2538-2550
  69. Naudet, V., Revil, A., Rizzo, E., Bottero, J.Y., Begassat, P. 2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences 8(1): 8-22
  70. Naumann, B., Englert, C. 2018. Dispersion/reaggregation in early development of annual killifishes: phylogenetic distribution and evolutionary significance of a unique feature. Developmental Biology 442(1): 69-79
  71. Niemi, G.J., McDonald, M.E. 2004. Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics 35(2004): 89-111
  72. Nuryanto, A., Bhagawati, D., Abulias, M.N., Indarmawan, I. 2016. Ichtyofauna at Cijalu River, Cilacap Regency Central Java Province, Indonesia. BIOTROPIA-The Southeast Asian Journal of Tropical Biology 23(1): 1-9
  73. Oarga, A. (2009). Life in extreme environments. Revista de Biologia e ciencias da Terra 9(1): 1-10
  74. Oren, A. 2010. Acidophiles - version 2.0. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons. Chichester. 14p
  75. Otohinoyi, D.A., Omodele, I. 2015. Prospecting microbial extremophiles as valuable resources of biomolecules for biotechnological applications. International Journal of Science and Research 4(1): 1042-1059
  76. Passow, C.N., Arias-Rodriguez, L., Tobler, M. 2017. Convergent evolution of reduced energy demands in extremophile fish. PLOS ONE 12(10): e0186935
  77. Podrabsky, J.E., Hand, S.C. 2015. Physiological strategies during animal diapause: lessons from brine shrimp and annual killifish. Journal of Experimental Biology 218(12): 1897-1906
  78. Podrabsky, J.E., Riggs, C.L., Romney, A.L., Woll, S.C., Wagner, J.T., Culpepper, K.M., Cleaver, T.G. 2017. Embryonic development of the annual killifish Austrofundulus limnaeus: an emerging model for ecological and evolutionary developmental biology research and instruction. Developmental Dynamics 246(11): 779-801
  79. Polacik, M., Podrabsky, J.E. 2015. Temporary environments. In Extremophile fishes (pp. 217-245). Springer
  80. Prieur D. 2007. An extreme environment on earth: deep-sea hydrothermal vents lessons for exploration of Mars and Europa. In: Grgaud M. et al (Eds), Lectures in Astrobiology, Advances in Astrobiology and Biogeophysics 2: 319-345
  81. Prosser, J.I., Bohannan, B.J.M., Curtis, T.P., Ellis, R.J., Firestone, M.K., Freckleton, R.P., …., Young, J.P.W. 2007. The role of ecological theory in microbial ecology. Nature Reviews Microbiology 5(5): 384-392
  82. Rampelotto, P.H. 2013. Extremophiles and extreme environments. Life 3(2013): 482-485
  83. Riesch, R., Tobler, M., Lerp, H., Jourdan, J., Doumas, T., Nosil, P., Langerhans, R.B., Plath, M. 2016. Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients. BMC Evolutionary Biology 16(1): 1-15
  84. Riesch, R., Tobler, M., Plath, M. 2015. Extremophile fishes: ecology, evolution, and physiology of teleosts in extreme environments. Springer. New York
  85. Rosidah., Henny, C. 2012. Kajian logam Fe, Al, Cu dan Zn pada perairan kolong paska penambangan timah di Pulau Bangka. Prosiding Seminar Nasional Limnologi VI: 611-619
  86. Rothschild, L.J., Mancinelli, R.L. 2001. Life in extreme environments. Nature 409(6823): 1092-1101
  87. Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., ...., Kizek, R. 2013. The role of metallothionein in oxidative stress. International Journal of Molecular Sciences 14(3): 6044-6066
  88. Sabolic, I., Breljak, D., Skarica, M., Herak-Kramberger, C.M. 2010. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23(5): 897-926
  89. Sadeghi, S.H.R., Harchegani, M., Younesi, H.A. 2012. Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content. Journal of Earth System Science 121(1): 63-71
  90. Sholihah, A., Delrieu-Trottin, E., Sukmono, T., Dahruddin, H., Risdawati, R., Elvyra, R., ...., Hubert, N. 2020. Disentangling the taxonomy of the subfamily Rasborinae (Cypriniformes, Danionidae) in Sundaland using DNA barcodes. Scientific Reports 10(1): 1-14
  91. Sinha, A., Sinha, R., Khare, S.K. 2014. Heavy metal bioremediation and nanoparticle synthesis by metallophiles. In Geomicrobiology and Biogeochemistry (pp. 101-118). Springer. Berlin
  92. Stamati, K., Mudera, V., Cheema, U. 2011. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. Journal of Tissue Engineering 2(1): 1-12
  93. Strom, D., Simpson, S.L., Batley, G.E., Jolley, D.F. 2011. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environmental Toxicology and Chemistry 30(7): 1599-1610
  94. Sudiyani, Y., Ardeniswan., Rahayuningwulan, D. 2011. Determinasi arsen (As) dan merkuri (Hg) dalam air dan sedimen di kolong bekas tambang timah (air kolong) di Propinsi Bangka Belitung, Indonesia. Ecolab 5(2): 55-66
  95. Sukarman., Gani, R.A. 2017. Lahan bekas tambang timah di Pulau Bangka dan Belitung, indonesia dan kesesuaiannya untuk komoditas pertanian. Jurnal Tanah dan Iklim 41(2): 101-114
  96. Sukarman., Gani, R.A., Asmarhansyah. 2020. Tin mining process and its effects on soils in Bangka Belitung Islands Province, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 17(2): 180-189
  97. Swathi, P., Sravanti, V. 2020. Extreme organisms: an astrobiological perspective, Research Journal of Biotechnology 15(10): 108-123
  98. Syarbaini., Warsona, A., Iskandar, D. 2014. Natural radioactivity in some food crops from Bangka-Belitung Islands, Indonesia. Atom Indonesia 40(1): 27-32
  99. Tan, G., Shu, W., Hallberg, K.B., Li, F., Lan, C., Huang, L. 2007. Cultivation-dependent and cultivation-independent characterization of the microbial community inacid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. FEMS Microbiology Ecology 59(1): 118-126
  100. Thompson, A.W., Hayes, A., Podrabsky, J.E., Orti, G. 2017. Gene expression during delayed hatching in fish-out-of-water. Ecological Genetics and Genomics 3-5(2-17): 52-59
  101. Tobler, M., Riesch, R., Plath, M. 2015. Extremophile fishes: an integrative synthesis. Extremophile Ffishes 279-296
  102. Toro, G., Pinto, M. 2015. Plant respiration under low oxygen. Chilean Journal of Agricultural Research 75(1): 57-70
  103. Turko, A.J., Wright, P.A. 2015. Evolution, ecology and physiology of amphibious killifishes (Cyprinodontiformes). Journal of Fish Biology 87(4): 815-835
  104. Ulukanli, Z., Digrak, M. 2002. Alkaliphilic micro-organisms and habitats. Turkish Journal of Biology 26(3): 181-191
  105. Wang, W.C., Mao, H., Ma, D.D., Yang, W.X. 2014. Characteristics, functions, and applications of metallothionein in aquatic vertebrates. Frontiers in Marine Science 1(34): 1-12
  106. Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., Hu, L. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment International 73(2014): 270-281
  107. Zhao, H., Li, X., Wang, X., Tian, D. 2010. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. Journal of Hazardous Materials 183(1-3): 203-210

Last update:

No citation recorded.

Last update:

No citation recorded.