skip to main content

Pengaruh Sistem Aerasi Intermittent terhadap Removal Organik dan Nitrogen pada Pengolahan Air Limbah Domestik Kamar Mandi Umum

1Magister Teknik Sistem, Universitas Gadjah Mada, Jalan Teknika Utara No.3 Kabupaten Sleman, Yogyakarta 55281, Indonesia

2Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada Jalan Grafika Kampus No.2 Kabupaten Sleman, Yogyakarta 55284, Indonesia

Received: 13 Oct 2021; Revised: 19 Nov 2021; Accepted: 2 Dec 2021; Available online: 10 Dec 2021; Published: 1 Jan 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Sebuah instalasi pengolahan air limbah (IPAL) dibangun untuk mengolah air limbah greywater dan blackwater dari toilet dan kamar mandi umum Wisdom Park UGM yang terletak di Dusun Kuningan, Catur Tunggal, Sleman, Daerah Istimewa Yogyakarta. Unit reaktor proses IPAL tersebut terdiri dari sedimentasi, ekualisasi, aerasi 1, aerasi 2 dan secondary clarifier dengan sistem pengolahan berupa aerasi intermitten dan aerasi kontinyu dengan menggunakan Microbubble Generator (MBG) dan blower. Saat ini belum pernah dilakukan kajian terkait efektivitas sistem proses biologi pada IPAL dalam menurunkan kandungan organik dan nitrogen air limbah. Suatu sistem aerasi intermitten diaplikasikan dengan tujuan untuk mendegradasi kandungan organik dan nitrogen yang terkandung dalam air limbah, juga dapat meningkatkan dan meratakan suplai oksigen sehingga kemampuan penyerapan oksigen menjadi lebih besar. Evaluasi IPAL dilakukan selama 82 hari pengamatan dengan parameter air limbah yang diujikan terdiri dari COD, NH3-N, NO3-N, NO2-N, dan PO4-P yang nantinya akan dibandingkan dengan PerMenLHK No 68 Tahun 2016 tentang Baku Mutu Air Limbah Domestik. Hasil performa removal kontaminan di tangki aerasi 1 dan tangki aerasi 2 tidak jauh berbeda, sehingga menunjukkan bahwa pengolahan di tangki aerasi 2 tidak begitu efektif. Pada tangki aerasi 1 rerata removal COD sebesar 73,97±17,65%, removal PO4-P sebesar 53,31±13,72%, removal total nitrogen sebesar 1,57±164,29%, efisiensi nitrifikasi sebesar 82,26±16,47% dan efisiensi denitrifikasi sebesar -66,4±373,37%. Sedangkan, total konsumsi energi yang dibutuhkan untuk pengolahan air limbah di IPAL dengan debit rerata 82,06 l/hari sebesar 43,13 kWh/m3 dan biaya sebesar Rp 62.326,00/m3. Dengan konsumsi energi terbesar dihasilkan untuk peyisihan fosfat yaitu 2,99 kWh/gPO4-P, penyisihan total nitrogen sebesar 1,33 kWh/gTN, penyisihan ammonia sebesar 0,88 kWh/gNH3-N, dan penyisihan COD sebesar 0,7 kWh/gCOD.

 

ABSTRACT

A wastewater treatment plant (WWTP) was built to treat greywater and blackwater from the public toilets and bathrooms of Wisdom Park UGM located in Dusun Kuningan, Catur Tunggal, Sleman, Special Region of Yogyakarta. The WWTP process reactor unit consists of sedimentation, equalization, aeration 1, aeration 2 and secondary clarifier with a processing system in the form of intermittent aeration and continuous aeration using a Microbubble Generator (MBG) and a blower. Currently, no study has been conducted regarding the effectiveness of the biological process system in WWTPs in reducing the organic and nitrogen content of wastewater. An intermittent aeration system is applied with the aim of degrading organic and nitrogen content contained in wastewater, as well as increasing and leveling oxygen supply so that oxygen absorption capacity becomes greater. The WWTP evaluation was carried out for 82 days of observation with the tested wastewater parameters consisting of COD, NH3-N, NO3-N, NO2-N, and PO4-P which will later be compared with the Minister of Environment and Forestry's Regulation No. 68, 2016 on Domestic Wastewater Quality Standards. The results of the contaminant removal performance in aeration tank 1 and aeration tank 2 were not much different, indicating that the treatment in aeration tank 2 was not very effective. In aeration tank 1 the mean COD removal was 73,97±17,65%, PO4-P removal was 53,31±13,72%, total nitrogen removal was 1,57±164,29%, nitrification efficiency was 82,26±16,47%, and denitrification efficiency was -66,4±373,37% in aeration tank 1. Meanwhile, the total energy consumption required for wastewater treatment at WWTP with an average discharge 82.06 l/day is 43.13 kWh/m3 and a cost of Rp. 62,326.00/m3. Phosphate removal required the most energy, at 2.99 kWh/gPO4-P, followed by total nitrogen removal at 1.33 kWh/gTN, ammonia removal at 0.88 kWh/gNH3-N, and COD removal at 0.7 kWh/gCOD

Fulltext View|Download
Keywords: aerasi intermittent; microbubble generator; nitrifikasi - denitrifikasi; total removal; konsumsi energi

Article Metrics:

  1. Ajit, K. (2016). A Review on Grey Water Treatment and Reuse. International Research Journal of Engineering and Technology, 2395–56. https://www.irjet.net/archives/V3/i5/IRJET-V3I5551.pdf
  2. Ávila, C., Pelissari, C., Sezerino, P. H., Sgroi, M., Roccaro, P., & García, J. (2017). Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater. Science of the Total Environment, 584–585, 414–425. https://doi.org/10.1016/j.scitotenv.2017.01.024
  3. Ayu, C., Anggraeni, D., Kurniasari, S., & Ismail, T. (2002). Penggunaan Membran Bioreaktor ( MBR ) Pada Activated Sludge Dalam Pengolahan Limbah Cair Industri. 2309105004
  4. Bodík, I., & Kubaská, M. (2013). Energy and sustainability of operation of a wastewater treatment plant. Environment Protection Engineering, 39(2), 15–24. https://doi.org/10.5277/EPE130202
  5. Côté, P., Peeters, J., Adams, N., Hong, Y., Long, Z., & Ireland, J. (2015). A new membrane-aerated biofilm reactor for low energy wastewater treatment: Pilot results. 88th Annual Water Environment Federation Technical Exhibition and Conference, WEFTEC 2015, 6(January), 4226–4239. https://doi.org/10.2175/193864715819540883
  6. Fitrahani, L. Z., Indrasti, N. S., & Suprihatin. (2012). Karakterisasi Kondisi Operasi dan Optimasi Proses Pengolahan Air Limbah Industri Pangan. E-Jurnal Agroindustri Indonesia, 1(2), 110–117. http://journal.ipb.ac.id/index.php/e-jaii/index
  7. Gou, J., Hong, C. U., Deng, M., Chen, J., Hou, J., Li, D., & He, X. (2019). Effect of carbon to nitrogen ratio on water quality and community structure evolution in suspended growth bioreactors through biofloc technology. Water (Switzerland), 11(8). https://doi.org/10.3390/w11081640
  8. Hammer. (1986). Water and Wastewater Technology. John Wiley and Sons
  9. Hanafi, F. (2019). Evaluasi Kinerja Instalasi Pengolahan Air Limbah (Ipal) Industri Penyamakan Kulit Di Pt.X. https://help.uii.ac.id/bitstream/handle/123456789/16311/08 naskah publikasi.pdf?sequence=17&isAllowed=y
  10. Indrayani, E., Nitimulyo, K. H., Hadisusanto, S., & Rustadi, R. (2015). Analisis kandungan nitrogen, fosfor dan karbon organik di Danau Sentani - Papua. Jurnal Manusia Dan Lingkungan, 22(2), 217–225
  11. Iswantari, A., Wardiatno, Y., Pratiwi, N., & Rusmana, I. (2013). Fluks Bentik dan Potensi Aktivitas Bakteri Terkait Siklus Nitrogen di Sedimen Perairan Mangrove Pulau Dua, Banten (Benthic Fluxes and Potency of Bacterial Activity Related to Nitrogen Cycle in Pulau Dua Mangrove Sediments, Banten). 10(1), 109–117
  12. Kementerian Lingkungan Hidup dan Kehutanan. (2019). Indeks Kualitas Lingkungan Hidup 2019 (Vol. 53, Issue 9). Kementerian Lingkungan Hidup dan Kehutanan. http://www.elsevier.com/locate/scp
  13. Kermani, M., Bina, B., Movahedian, H., Amin, M. M., & Nikaeen, M. (2009). Biological phosphorus and nitrogen removal from wastewater using moving bed biofilm process. Iranian Journal of Biotechnology, 7(1), 19–27
  14. Kurnia, A., Sandi, S., Dermawan, D., & Afiuddin, A. E. (2016). Pengaruh F / M Rasio dan Waktu Detensi Aerasi terhadap Efisiensi Removal TSS pada Pengolahan Limbah Cair Domestik Metode Conventional Activated Sludge. 2623, 125–128
  15. Lang, Z., Zhou, M., Zhang, Q., Yin, X., & Li, Y. (2020). Comprehensive treatment of marine aquaculture wastewater by a cost-effective flow-through electro-oxidation process. Science of the Total Environment, 722, 137812. https://doi.org/10.1016/j.scitotenv.2020.137812
  16. Li, Z., Zou, Z., & Wang, L. (2019). Analysis and Forecasting of the Energy Consumption in Wastewater Treatment Plant. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/8690898
  17. Metcalf, & Eddy. (2003). Wastewater Engineering Treatment and Reuse, 4th Edition (4th ed.). McGraw-Hill
  18. Najafpour, G. D., Zinatizadeh, A. A. L., & Lee, L. K. (2006). Performance of a three-stage aerobic RBC reactor in food canning wastewater treatment. Biochemical Engineering Journal, 30(3), 297–302. https://doi.org/10.1016/j.bej.2006.05.013
  19. Nuryadi, Astuti, T. D., Utami, E. S., & Budaintara, M. (2017). Dasar-Dasar Statistika Penelitian. http://lppm.mercubuana-yogya.ac.id/wp-content/uploads/2017/05/Buku-Ajar_Dasar-Dasar-Statistik-Penelitian.pdf
  20. Rusmana, I. (2007). Effects of Temperature on Denitrifying Growth and Nitrate Reduction End Products of Comamonas testosteroni Isolated from Estuarine Sediment. MIcrobiology Indonesia, 1(1), 43–47. https://doi.org/10.5454/mi.1.1.10
  21. Said, N. I., & Utomo, K. (2018). Pengolahan Air Limbah Domestik Dengan Proses Lumpur Aktif Yang Diisi Dengan Media Bioball. Jurnal Air Indonesia, 3(2), 160–174. https://doi.org/10.29122/jai.v3i2.2337
  22. Tendean, C., Tilaar, S., & Karongkong, H. H. (2014). Pengelolaan Air Limbah Domestik di Permukiman Kumuh di Kelurahan Calaca dan Istiqlal Kecamatan Wenang. Sabua, 6(3), 293–306
  23. Torkaman, M., Borghei, S. M., Tahmasebian, S., & Andalibi, M. R. (2015). Nitrogen removal from high organic loading wastewater in modified Ludzack-Ettinger configuration MBBR system. Water Science and Technology, 72(8), 1274–1282. https://doi.org/10.2166/wst.2015.343
  24. von Sperling, M., Verbyla, M. E., & Oliveira, S. M. A. C. (2020). Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners. In Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners. https://doi.org/10.2166/9781780409320
  25. Water Resources Division. (2017). Activated Sludge Process Control: Training Manual for Wastewater Treatment Plant Operators

Last update:

No citation recorded.

Last update: 2025-01-22 09:42:45

No citation recorded.