skip to main content

Pengaruh Remediasi Biochar dan Bioslurry Tanah Tercemar Terhadap Kadar Timbal Terlarut dan Bioavailabilitasnya pada Sawi Hijau (Brassica rapa)

Jurusan Kimia Universitas Cenderawasih, Jayapura, Indonesia

Received: 6 Dec 2021; Revised: 28 Dec 2021; Accepted: 7 Jan 2022; Available online: 20 Jan 2022; Published: 5 Apr 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Remediasi tanah dengan metode amobilisasi dapat dilakukan untuk mengaktifkan lahan pertanian tercemar timbal secara efektif dengan biaya rendah. Pada penelitian ini biochar dan bioslurry digunakan untuk amandemen tanah tercemar dan diuji keefektifannya mengurangi kadar Pb terlarut dan Pb yang diserap tanaman sawi hijau (B. rapa) di rumah kaca. Selanjutnya budidaya sawi di lapangan dilakukan untuk mengetahui dampak amandemen terhadap pertumbuhan dan kadar Pb-sawi serta kemungkinan kontaminasi Pb pada tanah sekitar. Sampel tanah tercemar diambil dari Desa Cinangka, Bogor sedangkanbioslurry dan sisa kegiatan pertanian/peternakan diperoleh dari Desa Jeruk Sawit di sekitar Kota Surakarta. Amandemen tanah ber-Pb 4.296 ppm dengan kombinasi biochar dan bioslurry (0; 2,5; 5,0; 10%) mampu mengurangi kelarutan Pb s.d 87,7% sekaligus mengurangi risiko ekologisnya dari tingkat moderat ke tingkat rendah. Pada uji rumah kaca, kombinasi biochar dan bioslurry menurunkan kadar Pb-daun sawi mencapai maksimal 63,11% dari 44,00 menjadi 16,23 ppm. Pertumbuhan tanaman sawi meningkat pada penambahan bioslurry tetapi penambahan biochar pada kadar 5 dan 10% menekan pertumbuhan yang kemungkinan karena pH yang terlalu tinggi untuk sawi. Uji lapangan selama satu kali masa tanam dengan kadar biochar dan bioslurry (5%/5%) mengakibatkan pertumbuhan sawi yang 20x lebih baik dibanding hasil budidaya rumah kaca, menurunkan Pb-daun dari 34,92 menjadi 21,71 ppm, serta mampu mencegah migrasi Pb ke sekitar media tanam.

ABSTRAK

Immobilization method of soil remediation can be conducted to activate lead contaminated agricultural land effectively at low cost. In this study, biochar and bioslurry were used to amend polluted soil and tested their effectiveness in reducing the levels of dissolved Pb and Pb absorbed by the green mustard (B. rapa) in the greenhouse. Furthermore, mustard cultivation in the field was carried out to determine the impact of the amendment on the growth and Pb levels of green mustard and the possibility of Pb contamination in the surrounding soil. Polluted soil samples were taken from Cinangka Village, Bogor, while bioslurry and the byproduct of agricultural/animal husbandry were obtained from Jeruk Sawit Village around Surakarta City. Polluted soil containing 4296 ppm Pb amended with a combination of biochar and bioslurry (0; 2.5; 5.0; 10%) were able to reduce Pb solubility up to 87.7% while reducing the ecological risk from moderate to low level. In the greenhouse test, the combination of biochar and bioslurry reduced the Pb level in mustard leaves to a maximum of 63.11% from 44.00 to 16.23 ppm. The growth of mustard plants increased with the addition of bioslurry but the addition of biochar at levels of 5 and 10% suppressed growth which was probably due to the pH being too high for green mustard. Field trial during one planting period with biochar and bioslurry level (5%/5%) resulted in 20x better growth of green mustard than greenhouse cultivation, reduced leaf-Pb from 34.92 to 21.71 ppm, and was able to prevent Pb migration around the planting medium.

Fulltext View|Download
Keywords: amobilisasi; tanah tercemar timbal; biochar; bioslurry; remediasi; B. rapa

Article Metrics:

  1. Abdelhafez, AA., Abbas, MHH., and Hamed, MH. 2016. Biochar: A Solution for Soil Lead (Pb) Pollution. The 8th International Conference for Development and the Environment in the Arab World, March 22-24 2016
  2. Baikhamurova, MO., Sainova, GA., Abseyit, A., Tashmetova, G., and Kelesbayev, K. 2020. The influence of lead on the growth and development of various mustard types. Eurasian Journal of Biosciences. Vol 14, 57-64 (2020)
  3. Bandara, T., Herath, I., Kumarathilaka, P., Hseu, ZY., Ok, YS., Vithanage, M. 2017. Efficacy of Woody Biomass and Biochar for Alleviating Heavy Metal Bioavailability in Serpentine Soil. Environ Geochem Health vol 39: 391-401
  4. Clark, HF., Brabander, DJ., & Erdil, RM. 2006. Sources, Sinks, and Exposure Pathways of Lead in Urban Garden Soil. Journal of Environmental Quality. 35(6):2066-2074
  5. De Groot, L. and Bogdanski, A. 2013. Bioslurry = Brown Gold? A Review of Scientific Literature on the Co-product of Biogas Production. Rome: Food and Agricultural Organization of the United Nations
  6. Himawan, Rahardjo, SB., Suntoro, S., & Setyono, P. 2021, Remediation of Lead-contaminated Farmland Soil: Efficacy of Low-cost Natural Amendments in [Im]mobilization of Lead. Agrivita Journal of Agricultural Sciences. Vol 43(1): 209-220
  7. Kabata-Pendias, A. & Pendias, H. 2001. Trace Elements in Soils and Plants, third edition, CRC Press LLC, Washington, D.C
  8. Khalid, S., Shahid, M., Niazi, NK., Murtaza, B., Bibi, I., & Dumat, C. 2016. A Comparison of Technologies of Remediation of Heavy Metal Contaminated Soil. Journal of Geochemical Exploration. 11.021
  9. Lu, L., Tian, S., Yang, X., Peng, H., and Li, T. 2014, Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid, J Zhejiang Univ-Sci B (Biomed & Biotechnol) 14(2): 106-114
  10. Mourato, MP., Moreira, IN., Leitao, I., Pinto, FR., Salis, JR., & Martins, LL. (2015) Effect of Heavy Metals in Plants of Genus Brassica. Int. J. Mol. Sci. 16, 17975-17998. Doi: 10.3390/ijms160817975
  11. Nemati, K., Abu Bakar, N. K., Abas, M. R., & Sobhanzadeh, E. 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192, 402-410. http://doi: 10.1016/j.jhazmat.2011.05.039
  12. Park, JH., Choppala, GK., Bolan, NS., Chung, JW., and Chuasavathi, T. 2011. Biochar Reduces the Bioavailability and Phytotoxicity of Heavy Metals. Plant Soil 348: 439-451
  13. Rodriguez, l., Gomez, R., Sanchez, V., & Azcarate, J. A. 2016. Chemical and plant tests to assess the viability of amendments to reduces metal availability in mine soils and tailings. Environ Sci Pollut Res. 23: 6046-6054
  14. Sanchez, MG., Klouza, M., Holeckova, Z., Tlustos, P., Szakova, J. 2016. Organic and Inorganic Amendment Application on Mercury-polluted Soils: Effects on Soil Chemical and Biochemical Properties. Environ Sci Pollut Res, vol 23: 14254-14268
  15. Santosa, E. dan Widati, S. 2007. Estimasi Karbon Mikroba. hlm. 130-133. dalam Saraswati, R., Husen, E., & Simanungkalit, RDM. (edt.) Metode Analisis Biologi Tanah. Balai Besar Litbang Sumberdaya Lahan Pertanian
  16. Shaheen, S. M., & Rinklebe, J. 2015. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in contaminated floodplain soil. Ecological Engineering 74 (2015): 319-326. http://dx.doi.org/10.1016/j.ecoleng.2014.10.024
  17. Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, LM. 2018. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech. 8:216
  18. Shen, Z.G., Li, X.D., Wang, C.C., Chen, H.M., dan Chua, H. 2002. Lead Phytoextraction from Contaminated Soil with High-Biomass Plant Species. Journal of Environmental Quality. vol. 31, no. 6, hlm. 1893-1900
  19. Tytla, M. 2019. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland-Case Study. International Journal of Environmental Research and Public Health. 16, 2430. Doi: 10.3390/ijerph16132430
  20. Wuana, RA , Okieimen, FE, 2011, Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation, International Scholarly Research Network ISRN Ecology, Volume 2011: 1-20
  21. Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Gou, X., He, L., Lin, X., Che, L., Ye, Z., & Wang, H. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, & Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res., 23: 974-984. Doi: 10.1007/s11356-015-4233-0
  22. Zhang, L., Liao, Q., Shao, S., Zhang, N., Shen, Q., & Liu, C. 2015. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers. Int. J. Environ. Res. Public Health, 12: 14115-14131. Doi: 10.3390/ijerph121114115

Last update:

No citation recorded.

Last update: 2024-11-20 19:41:05

No citation recorded.