skip to main content

Pemanfaatan Scrap Besi Menjadi Copperas dan Ekstrak Kulit Rambutan untuk Pembuatan Nanopartikel Besi yang Ramah Lingkungan

1Program Studi Analis Kimia, Fakultas Teknik Universitas Setia Budi, Indonesia

2Program Studi Farmasi, Fakultas Farmasi Universitas Setia Budi, Indonesia

3Program Studi Analis Kesehatan, Fakultas Ilmu Kesehatan Universitas Setia Budi, Indonesia

Received: 30 Jan 2022; Revised: 6 Mar 2022; Accepted: 12 Mar 2022; Available online: 20 Mar 2022; Published: 4 Jul 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Dalam beberapa tahun terakhir, pembuatan nanopartikel besi telah menjadi perhatian karena efisiensinya pada penghilangan beberapa jenis zat pencemar. Zat-zat pencemar yang dapat diolah dengan nanopartikel besi antara lain senyawa azo, pelarut terklorinasi, pestisida terklorinasi, anion anorganik dan logam transisi, polutan organik dan anorganik, logam berat, nitrat, bromida, arsen, kromium, timbal, antibiotik,  dan pewarna. Pada umumnya, pembuatan nanopartikel besi dilakukan dengan mereduksi besi bermuatan tiga/dua dengan natrium tetra borana, NaBH4. Pembuatan nnanopartikel besi menggunakan NaBH4 menghasilkan produk samping berupa asam borat yang beracun dan gas hidrogen yang mudah meledak atau terbakar. Penelitian ini bertujuan membuat nanopartikel besi dengan memanfaatkan limbah scrap besi menjadi copperas kemudian mereaksikan dengan ekstrak kulit rambutan. Metode yang dilakukan adalah mereaksikan scrap besi dengan asam sulfat sampai terbentuk copperas yang berwarna biru kehijauan. Copperas yang dihasilkan dibuat menjadi larutan kemudian direksikan dengan ekstrak kulit rambutan. Larutan hitam yang dihasilkan dikarakterisasi dengan Spektrofotometri UV-Vis dan TEM. Larutan berwarna hitam dikeringkan dengan cara spray drying kemudian serbuk nanopartikel besi dikarakterisasi dengan XRD, FTIR, dan SEM-EDX. Hasil penelitian menunjukkan bahwa scrap besi dapat dibuat menjadi copperas dengan kadar Fe 22,09%. Ekstrak kulit rambutan mengandung kadar fenol total 877,39 ± 16,6 ppm/100 g kulit rambutan atau setara dengan 441,42 mg GAE/100 g kulit rambutan. Nanopartikel besi berhasil dibuat dari copperas dari scrap besi dan ekstrak kulit rambutan yang mempunyai karakter Surface Plasmon Resonance (SPR) pada serapan 214 nm, ukuran partikel 5-20 nm  dalam bentuk larutan dan 20-70 nm dalam bentuk serbuk. Hasil ini bisa menjadi alternatif produksi nanopartikel besi  suatu material bermanfaat untuk mencegah terjadinya pencemaran lingkungan.       

ABSTRACT

In recent years, the manufacture of iron nanoparticles has become a concern because of its efficiency in removing several types of contaminants. Pollutants that can be treated with iron nanoparticles include azo compounds, chlorinated solvents, chlorinated pesticides, inorganic anions and transition metals, organic and inorganic pollutants, heavy metals, nitrates, bromides, arsenic, chromium, lead, antibiotics, and dyes. In general, the manufacture of iron nanoparticles is carried out by reducing three/two charged iron with sodium tetra borane, NaBH4. The manufacture of iron nanoparticles using NaBH4 produces toxic by-products in the form of boric acid and hydrogen gas which is flammable or explosive. This study aims to make iron nanoparticles by utilizing scrap iron waste into copperas then reacting it with rambutan peel extract. The method used is to react iron scrap with sulfuric acid to form copperas which is blue-green in color. The resulting copperas were made into a solution and then treated with rambutan peel extract. The resulting black solution was characterized by UV-Vis Spectrophotometry and TEM. The black solution was dried by spray drying and then the powdered iron nanoparticles were characterized by XRD, FTIR, and SEM-EDX. The results showed that iron scrap can be synthesized into ferrous sulfate with 22.09% Fe content. Rambutan peel extract contains a total phenol content of 877.39 ± 16.6 ppm/100 g rambutan peel or equivalent to 441.42 mg GAE/100 g rambutan peel. Iron nanoparticles were successfully made from copperas from iron scrap and rambutan peel extract with the characteristics of having Surface Plasmon Resonance (SPR) at an absorption of 214 nm, particle size of 5-20 nm in solution form and 20-70 nm in powder form. This result can be an alternative for the production of iron nanoparticles, a useful material to prevent environmental pollution.

Fulltext View|Download
Keywords: Scrap besi; ekstrak kulit rambutan; nanopartikel besi; ramah lingkungan.

Article Metrics:

  1. Ahamed, I. N., Anbu, S., Vikraman, G., Nasreen, S., Muthukumari, M., & Kumar, M. M. (2016). Green Synthesis of Nano Zerovalent Iron Particles ( NZVI ) for Environmental Remediation. Life Science Archives, 2(3), 549–554
  2. Akbar, R. A. (2016). Pengaruh paparan CH4 dan H2S terhadap keluhan gangguan pernafasan pemulung di TPA Mrican Kabupaten Ponorogo. Journal of Industrial Hygiene and Occupational Health, 1(1), 1
  3. Anouar, E. H., Gierschner, J., Duroux, J.-L., & Trouillas, P. (2015). UV / Visible spectra of natural polyphenols : A time-dependent density functional theory study. Food Chemistry, 131(1), 79–89. https://doi.org/10.1016/j.foodchem.2011.08.034
  4. Anu, Y., & D.Vijay, M. (2016). Camellia sinensis mediated synthesis of Iron nanoparticles and its encapsulation for decolorization of dyes. Biochemistry An Indian Journal, 10(1), 20–29
  5. Ashouri, A., Anvaripour, B., Motavassel, M., & Jaafarzadeh Haghighifard, N. (2014). Arsenate Removal from Water by Simultaneous Green Tea Nano-Zerovalent Iron and Ultrasonic Wave. ISRN Chemical Engineering, 2014, 1–9. https://doi.org/10.1155/2014/457868
  6. Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1–3), 58–63. https://doi.org/10.1016/j.colsurfa.2010.07.024
  7. Bhuvaneshwari, M., Kumar, D., Roy, R., Chakraborty, S., Parashar, A., Mukherjee, A., Chandrasekaran, N., & Mukherjee, A. (2017). Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. Aquatic Toxicology, 183, 63–75
  8. Bruton, T. A., Pycke, B. F. G., & Halden, R. U. (2015). Effect of Nanoscale Zero-Valent Iron Treatment on Biological Reductive Dechlorination: A Review of Current Understanding and Research Needs. Critical Reviews in Environmental Science and Technology, 45(11), 1148–1175
  9. Chandra, B. (2005). Pengantar Kesehatan Lingkunagan (1st ed.). Penerbit Buku Kedokteran EGC. https://books.google.co.id/books?id=dOrH3zuDYdgC&pg=PA119&lpg=PA119&dq=PEMBENTUKAN+GAS+H2S,+METANA,+NH3+DARI+SAMPAH&source=bl&ots=S2YNUSjW3A&sig=vFeDtS3lIqEUDs3kQdWfWFvJbn4&hl=id&sa=X&ved=0ahUKEwj98fPp8rzXAhUDNo8KHTduAfAQ6AEIJjAA#v=onepage&q=PEMBENTUKAN%252
  10. Chang, D., Chen, T., Liu, H., Xi, Y., Qing, C., Xie, Q., & Frost, R. L. (2014). A new approach to prepare ZVI and its application in removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 244, 264–272. https://doi.org/10.1016/j.cej.2014.01.095
  11. Chen, T., Zhou, Z., Xu, S., Wang, H., & Lu, W. (2015). Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresource Technology, 190, 388–394. http://www.sciencedirect.com/science/article/pii/S0960852415006495
  12. Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073
  13. Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of Cleaner Production, 139, 1425–1435. https://doi.org/10.1016/j.jclepro.2016.09.019
  14. El-Temsah, Y. S., Oughton, D. H., & Joner, E. J. (2013). Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: A column experiment. Plant and Soil, 368(1–2), 189–200
  15. El-Temsah, Y. S., Sevcu, A., Bobcikova, K., Cernik, M., & Joner, E. J. (2016). DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere, 144, 2221–2228
  16. Etemadi, M., Samadi, S., Yazd, S. S., Jafari, P., Yousefi, N., & Aliabadi, M. (2017). Selective adsorption of Cr(VI) ions from aqueous solutions using Cr6+-imprinted Pebax/chitosan/GO/APTES nanofibrous adsorbent. International Journal of Biological Macromolecules, 95(December), 725–733. https://doi.org/10.1016/j.ijbiomac.2016.11.117
  17. Fazlzadeh, M., Rahmani, K., Zarei, A., Abdoallahzadeh, H., Nasiri, F., & Khosravi, R. (2016). A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Advanced Powder Technology, 28(1), 122–130. https://doi.org/10.1016/j.apt.2016.09.003
  18. Fujioka, N., Suzuki, M., Kurosu, S., & Kawase, Y. (2016). Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer. Chemosphere, 144, 1738–1746. https://doi.org/10.1016/j.chemosphere.2015.10.064
  19. Giri, S., Samanta, S., Maji, S., Ganguli, S., & Bhaumik, A. (2005). Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method. Journal of Magnetism and Magnetic Materials, 285(1–2), 296–302. https://doi.org/10.1016/j.jmmm.2004.08.007
  20. Harshiny, M., Iswarya, C. N., & Matheswaran, M. (2015). Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technology, 286, 744–749. https://doi.org/10.1016/j.powtec.2015.09.021
  21. Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-Mediated Green Synthesis of Iron Nanoparticles. Journal of Nanoparticles, 2014(October). https://doi.org/10.1155/2014/140614
  22. Hoag, G. E., Collins, J. B., Varma, R. S., & Nadagouda, M. N. (2011). GREEN SYNTHESIS OF NANOMETALS USING PLANT EXTRACTS AND USE THEREOF. https://doi.org/10.1016/j.(73)
  23. Hou, W., & Cronin, S. B. (2013). A review of surface plasmon resonance-enhanced photocatalysis. Advanced Functional Materials, 23(13), 1612–1619. https://doi.org/10.1002/adfm.201202148
  24. Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of iron nanoparticles by various tea extracts : Comparative study of the reactivity. SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 130, 295–301. https://doi.org/10.1016/j.saa.2014.04.037
  25. Isacfranklin, M., Dawoud, T., Ameen, F., Ravi, G., Yuvakkumar, R., Kumar, P., Hong, S. I., Velauthapillai, D., & Saravanakumar, B. (2020). Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract. Ceramics International, 46(16), 25915–25920. https://doi.org/10.1016/j.ceramint.2020.07.076
  26. Jain, P. K., Xiao, Y., Walsworth, R., & Cohen, A. E. (2009). Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Letters, 9(4), 1644–1650. https://doi.org/10.1021/nl900007k
  27. Jiao, C., Cheng, Y., Fan, W., & Li, J. (2015). Synthesis of agar-stabilized nanoscale zero-valent iron particles and removal study of hexavalent chromium. International Journal of Environmental Science and Technology, 12(5), 1603–1612. https://doi.org/10.1007/s13762-014-0524-0
  28. Kalyan Kamal, S. S., Vimala, J., Sahoo, P. K., Ghosal, P., Ram, S., & Durai, L. (2014). A green chemical approach for synthesis of shape anisotropic gold nanoparticles. International Nano Letters, 4(2), 109. https://doi.org/10.1007/s40089-014-0109-4
  29. Karnan, T., Arul, S., Selvakumar, S., Adinaveen, T., & Suresh, J. (2016). Visible light induced photocatalytic degradation of azo dye by Bi2O3 nanoparticles synthesized using greener route. 7(8), 266–270
  30. Karnan, T., & Selvakumar, S. A. S. (2016a). Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. Journal of Molecular Structure, 1125, 358–365. https://doi.org/10.1016/J.MOLSTRUC.2016.07.029
  31. Kokila, T., Ramesh, P. S., & Geetha, D. (2015). Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Applied Nanoscience, 5(8), 911–920. https://doi.org/10.1007/s13204-015-0401-2
  32. Kumar, B., Smita, K., Angulo, Y., & Cumbal, L. (2016). Valorization of rambutan peel for the synthesis of silver-doped titanium dioxide (Ag/TiO2) nanoparticles. Green Processing and Synthesis, 5(4), 371–377. https://doi.org/10.1515/gps-2016-0003
  33. Kumar, B., Smita, K., Cumbal, L., & Angulo, Y. (2015). Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: A sustainable approach. Journal of Molecular Liquids, 211, 476–480. https://doi.org/10.1016/J.MOLLIQ.2015.07.067
  34. Kumar, D., Roy, R., Parashar, A., Raichur, A. M., Chandrasekaran, N., Mukherjee, A., & Mukherjee, A. (2017). Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environmental Toxicology, 32(5), 1617–1627
  35. Kumari, M., Pittman, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 442, 120–132. https://doi.org/10.1016/j.jcis.2014.09.012
  36. Lacina, P., Dvorak, V., Vodickova, E., Barson, P., Kalivoda, J., & Goold, S. (2015). The Application of Nano-Sized Zero-Valent Iron for In Situ Remediation of Chlorinated Ethylenes in Groundwater: A Field Case Study. Water Environment Research, 87(4), 326–333
  37. Leili, M., Fazlzadeh, M., & Bhatnagar, A. (2018). Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environmental Technology (United Kingdom), 39(9), 1158–1172. https://doi.org/10.1080/09593330.2017.1323956
  38. Li, S., Wang, W., Liang, F., & Zhang, W. (2017). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322, 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032
  39. Lu, H.-J., Wang, J.-K., Ferguson, S., Wang, T., Bao, Y., & Hao, H. (2016). Mechanism, synthesis and modification of nano zerovalent iron in water treatment. Nanoscale, 8(19), 9962–9975. https://doi.org/10.1039/C6NR00740F
  40. Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, The, 445–446, 1–8. https://doi.org/10.1016/j.scitotenv.2012.12.033
  41. Madhavi, V., Prasad, T., & Madhavi, G. (2013). Synthesis and Spectral Characterization of Iron Based Micro and Nanoparticles. International Journal of Nanomaterials and Biostructures, 3(2), 31–34. https://doi.org/10.5829/idosi.ijee.2013.04.04.10
  42. Mehdi Fazlzadeha, Kourosh Rahmania, Ahmad Zareib, Hossein Abdoallahzadeha, Fakhraddin Nasiric, R. K. (2016). A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Advanced Powder Technology. http://www.sciencedirect.com/science/article/pii/S0921883116302497
  43. Mendez-Flores, A., Hérnandez-Almanza, A., Sáenz-Galindo, A., Morlett-Chávez, J., Aguilar, C., & Ascacio-Valdés, J. (2018). Ultrasound-assisted extraction of antioxidant polyphenolic compounds from Nephelium lappaceum L. (Mexican variety) husk. Asian Pacific Journal of Tropical Medicine, 11(12), 676. https://doi.org/10.4103/1995-7645.248339
  44. Menezes, E. W., Tadini, C. C., Tribess, T. B., Zuleta, A., Binaghi, J., Pak, N., Vera, G., Dan, M. C. T., Bertolini, A. C., Cordenunsi, B. R., & Lajolo, F. M. (2011). Chemical Composition and Nutritional Value of Unripe Banana Flour (Musa acuminata, var. Nanicão). Plant Foods for Human Nutrition, 66(3), 231–237. https://doi.org/10.1007/s11130-011-0238-0
  45. Mo, Y., Tang, Y., Wang, S., Lin, J., Zhang, H., & Luo, D. (2015). Green synthesis of silver nanoparticles using eucalyptus leaf extract. Materials Letters, 144(April 2015), 165–167. https://doi.org/10.1016/j.matlet.2015.01.004
  46. Monalisa Pattanayak, & P. L. Nayak. (n.d.). ECOFRIENDLY GREEN SYNTHESIS OF IRON NANOPARTICLES FROM VARIOUS PLANTS AND SPICES EXTRACT. Retrieved July 26, 2017, from http://ijpaes.com/archive.php?issueid=30
  47. Murgueitio, E., Debut, A., Landivar, J., & Cumbal, L. (2016). Synthesis of Iron Nanoparticles using Extracts of Native Fruits of Ecuador, as Capuli (Prunus serotina) and Mortino (Vaccinium floribundum). Biology and Medicine, 08(03), 1–3. https://doi.org/10.4172/0974-8369.1000282
  48. Mystrioti, C., Sparis, D., Papasiopi, N., Xenidis, A., Dermatas, D., & Chrysochoou, M. (2015). Assessment of polyphenol coated Nano zero Valent iron for hexavalent chromium removal from contaminated waters. Bulletin of Environmental Contamination and Toxicology, 94, 302–307. https://doi.org/10.1007/s00128-014-1442-z
  49. Mystrioti, C., Xanthopoulou, T. D., Tsakiridis, P. E., Papassiopi, N., & Xenidis, A. (2016). Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Science of the Total Environment, 539, 105–113. https://doi.org/10.1016/j.scitotenv.2015.08.091
  50. Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Greem Chemistry, 12(Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.), 114–122
  51. Nagarajaiah, S. B., & Prakash, J. (2011). Chemical composition and antioxidant potential of peels from three varieties of banana. As. J. Food Ag-Ind, 4(04), 256–263. https://doi.org/10.1016/0309-1740(95)80016-6
  52. Noruzi, M., & Mousivand, M. (2015). Instantaneous Green Synthesis of Zerovalent Iron Nanoparticles by Thuja orientalis Extract and Investigation of Their Antibacterial Properties. Journal of Applied Chemical Research, 9(2), 37–50. www.jacr.kiau.ac.ir
  53. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122
  54. Padilla-Camberos, E., Flores-Fernández, J. M., Canales-Aguirre, A. A., Barragán-Álvarez, C. P., Gutiérrez-Mercado, Y., & Lugo-Cervantes, E. (2016). Wound healing and antioxidant capacity of Musa paradisiaca Linn. peel extracts. Journal of Pharmacy & Pharmacognosy Research, 4(5), 165–173. http://jppres.com/jppres/pdf/vol4/jppres16.124_4.5.165.pdf%0Ahttp://jppres.com/jppres/wound-healing-and-antioxidant-capacity-of-musa-paradisiaca-peel/
  55. Pattanayak, M., & Nayak, P. L. (2013). Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Azadirachta indica ( Neem ). World Journal of Nano Science & Technology, 2(1), 6–9. https://doi.org/10.5829/idosi.wjnst.2013.2.1.21132
  56. Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177(5), 421–427. https://doi.org/10.1016/j.mseb.2012.01.003
  57. Poguberović, S. S., Krčmar, D. M., Maletić, S. P., Kónya, Z., Pilipović, D. D. T., Kerkez, D. V., & Rončević, S. D. (2016). Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecological Engineering, 90, 42–49. https://doi.org/10.1016/j.ecoleng.2016.01.083
  58. Prasad, K. S., Gandhi, P., & Selvaraj, K. (2014). Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Applied Surface Science, 317, 1052–1059. https://doi.org/10.1016/j.apsusc.2014.09.042
  59. Purwoto, S., & Nugroho, W. (2013). REMOVAL KLORIDA, TDS DAN BESI PADA AIR PAYAU MELALUI PENUKAR ION DAN FILTRASI CAMPURAN ZEOLIT AKTIF DENGAN KARBON AKTIF. WAKTU, 11(1), 47–59. http://jurnal.unipasby.ac.id/index.php/waktu/article/view/861
  60. Rahayu, B., Napitupulu, M., & Tahril, T. (2017). ANALISIS LOGAM ZINK (Zn) DAN BESI (Fe) AIR SUMUR DI KELURAHAN PANTOLOAN KECAMATAN PALU UTARA. Jurnal Akademika Kimia, 2(1), 1–4. http://jurnal.untad.ac.id/jurnal/index.php/JAK/article/view/7718
  61. Ravikumar, K. V. G., Kumar, D., Rajeshwari, A., Madhu, G. M., Mrudula, P., Chandrasekaran, N., & Mukherjee, A. (2016). A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environmental Science and Pollution Research, 23(3), 2613–2627. https://doi.org/10.1007/s11356-015-5382-x
  62. Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(209), 1–29. https://doi.org/10.3390/nano6110209
  63. Sathya, M. (2014). Assaying the antioxidant activity of banana peel. American Journal of Biochemistry and Molecular Biology, 4(3), 122–129. https://doi.org/10.3923/ajbmb.2014.122.129
  64. Shahwan, T., Abu Sirriah, S., Nairat, M., Boyaci, E., Eroĝlu, A. E., Scott, T. B., & Hallam, K. R. (2011). Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 172(1), 258–266. https://doi.org/10.1016/j.cej.2011.05.103
  65. Sheng, G., Hu, J., Li, H., Li, J., & Huang, Y. (2016). Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere, 148, 227–232. https://doi.org/10.1016/j.chemosphere.2016.01.035
  66. Shu, H. Y., Chang, M. C., Chen, C. C., & Chen, P. E. (2010). Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials, 184(1–3), 499–505
  67. Singhal, M., & Ratra, P. (2013). Antioxidant activity, total flavonoid and total phenolic content of Musa acuminate peel extracts. Global Journal of Pharmacology, 7(2), 118–122. https://doi.org/10.5829/idosi.gjp.2013.7.2.72158
  68. Soliemanzadeh, A., & Fekri, M. (2017). The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr ( VI ): Effect of relative parameters and soil experiments. Microporous and Mesoporous Materials, 239, 60–69
  69. Soliemanzadeh, A., Fekri, M., Bakhtiary, S., & Mehrizi, M. H. (2016). Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions. Chemistry and Ecology, 32(3), 286–300
  70. Suharno, Harajanti, B., Wijanto, D. S., Saputro, H., & Basori. (2012). Pendidikan Dan Pelatihan Profesi Guru ( PLPG ). FKIP Universitas Sebelas Maret
  71. Sunardi, Prasadja, M. E., Sembiring, F. (2015). Sintesis Ferri Klorida Dari Scrap Besi Bengkel Bubut. Ekosains, VII(2), 117–120
  72. Sunardi. (2009). Potency of use ferrous sulphate from iron waste workshop bubut for raw material pharmacy. Indonesian Journal of Pharmacy, 20(3), 151–155. https://doi.org/10.14499/indonesianjpharm0iss0pp151-155
  73. Taha, M., & Ibrahim, A. (2014). Applicability of nano zero valent iron (nZVI) in sono–Fenton process. Journal of Physics: …. https://doi.org/10.1088/1742-6596/495/1/012010
  74. Tejabhiram, Y., Pradeep, R., Helen, A. T., Gopalakrishnan, C., & Ramasamy, C. (2014). Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures. Materials Research Bulletin, 60(1), 778–782. https://doi.org/10.1016/j.materresbull.2014.09.035
  75. Thenmozhi, B., Suryakiran, S., Sudha, R., & Revathy, B. (2014). Green Synthesis and Comparative Study of Silver and Iron Nanoparticles from leaf extract. International Journal of Institutional Pharmacy and Life Sciences, 4(2), 5–19
  76. Thitilertdecha, N., & Rakariyatham, N. (2011). Phenolic content and free radical scavenging activities in rambutan during fruit maturation. Scientia Horticulturae, 129(2), 247–252. https://doi.org/10.1016/J.SCIENTA.2011.03.041
  77. Thitilertdecha, N., Teerawutgulrag, A., Kilburn, J. D., & Rakariyatham, N. (2010). Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities. Molecules, 15(3), 1453–1465. https://doi.org/10.3390/molecules15031453
  78. Thitilertdecha, N., Teerawutgulrag, A., & Rakariyatham, N. (2008). Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT - Food Science and Technology, 41(10), 2029–2035. https://doi.org/10.1016/J.LWT.2008.01.017
  79. Tosco, T., Petrangeli Papini, M., Cruz Viggi, C., & Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: A review. In Journal of Cleaner Production (Vol. 77, pp. 10–21). Elsevier
  80. Tsang, S. C., Yu, C. H., Gao, X., & Tam, K. (2006). Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. Journal of Physical Chemistry B, 110(34), 16914–16922. https://doi.org/10.1021/jp062275s
  81. Varma, R. S. (2012). Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering, 1(2), 123–128
  82. Wahyuni, S. (2011). Menghasilkan Biogas dari Aneka Limbah (I). PT AgroMedia Pustaka. https://books.google.co.id/books?id=g2Q8pF1qD1AC&pg=PA19&lpg=PA19&dq=PEMBENTUKAN+GAS+H2S,+METANA,+NH3+DARI+SAMPAH&source=bl&ots=ro5rG1AZ0K&sig=VrCsVNpq3cOiS4EofqxQvhpcefY&hl=id&sa=X&ved=0ahUKEwj98fPp8rzXAhUDNo8KHTduAfAQ6AEIWjAO#v=onepage&q=PEMBENTUKAN G
  83. Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment, 466–467, 210–213. https://doi.org/10.1016/j.scitotenv.2013.07.022
  84. Wang, X., Wang, A., Ma, J., & Fu, M. (2017). Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes. Chemosphere, 166, 80–88. https://doi.org/10.1016/j.chemosphere.2016.09.056
  85. Wang, Z., Fang, C., & Megharaj, M. (2014). Characterization of Iron − Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chem. Eng., 1–4. https://doi.org/10.1021/sc500021n
  86. Wei, Y., Fang, Z., Zheng, L., Tan, L., & Tsang, E. P. (2016). Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Materials Letters, 185, 384–386. https://doi.org/10.1016/j.matlet.2016.09.029
  87. Xu, J., Gao, N., Zhao, D., Yin, D., Zhang, H., Gao, Y., & Shi, W. (2015). Comparative study of nano-iron hydroxide impregnated granular activated carbon (Fe–GAC) for bromate or perchlorate removal. Separation and Purification Technology, 147, 9–16. https://doi.org/10.1016/j.seppur.2015.03.052
  88. Yoon, S.-Y., Lee, C.-G., Park, J.-A., Kim, J.-H., Kim, S.-B., Lee, S.-H., & Choi, J.-W. (2014). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chemical Engineering Journal, 236, 341–347. https://doi.org/10.1016/j.cej.2013.09.053
  89. Yuan, N., Zhang, G., Guo, S., & Wan, Z. (2016). Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron. Ultrasonics Sonochemistry, 28, 62–68. https://doi.org/10.1016/j.ultsonch.2015.06.029
  90. Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C, 41, 17–27. https://doi.org/10.1016/J.MSEC.2014.04.025
  91. Yuvakkumar, R., Suresh, J., Saravanakumar, B., Joseph Nathanael, A., Hong, S. I., & Rajendran, V. (2015). Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 137, 250–258. https://doi.org/10.1016/j.saa.2014.08.022
  92. Zhuang, Y., Ma, Q., Guo, Y., & Sun, L. (2017). Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and D-galactose-induced aging mice. Food and Chemical Toxicology, 108, 554–562. https://doi.org/10.1016/j.fct.2017.01.022

Last update:

No citation recorded.

Last update:

No citation recorded.