skip to main content

Model Pengelolaan Banjir: Systematic Review dan Arahan untuk Masa Depan

1Graduate Program of Natural Resources and Environmental Management, Faculty of Multidisciplinary, IPB University (Bogor Agricultural University), Indonesia

2Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University (Bogor Agricultural University), Indonesia

3Department of Agro-industrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Indonesia

Received: 2 Feb 2022; Revised: 9 Mar 2022; Accepted: 12 Mar 2022; Available online: 22 Mar 2022; Published: 4 Jul 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Banjir merupakan salah satu bencana alam yang sering terjadi di seluruh dunia, menyebabkan kerugian ekonomi, rusaknya infrastruktur bahkan sering menimbulkan korban nyawa. Oleh karena itu, mengatasi permasalahan banjir sangat penting untuk dilakukan. Tujuan makalah ini adalah untuk mensintesis permasalahan banjir dan menyusun kerangka kerja pengelolaan banjir secara holistik. Makalah ini mengulas dan mensintesis 124 jurnal yang diterbitkan antara tahun 2011 – 2021. Artikel jurnal yang diulas dikategorikan ke dalam tema pengaruh perubahan tutupan lahan terhadap hidrolgi (PL-H), perubahan penggunaan lahan (LULC), pengaruh klimatologi terhadap hidrologi (PK-H), mitigasi banjir (MB), ekonomi terkait banjir (Ek), evaluasi kejadian banjir (Ev), pengaruh perubahan lahan dan pengaruh klimatologi terhadap hidrologi (PL-PK-H), dan hidrologi (H). Tema hidrologi (H) merupakan topik dominan yang kami temukan dalam literatur sebanyak 30% selanjutnya 25% tema mitigasi banjir (MB) dan 17% tema pengaruh perubahan tutupan lahan terhadap hidrolgi (PL-H). Kontribusi dari makalah ini adalah menghasilkan kerangka kerja komprehensif yang perlu dilakukan dalam melakukan pengelolaan banjir.

ABSTRACT

Floods are one of the natural disasters that often occur around the world, causing economic losses, damage to infrastructure and often cause casualties. Therefore, overcoming the problem of flooding is very important to do. The purpose of this paper is to analyze flood problems and develop new flood management frameworks. The paper reviews and synthesizes 124 journals published between 2011 and 2021. The journal article reviewed is categorized into the themes of the influence of land cover changes on hydrolgi (PL-H), land use change (LULC), climatology influence on hydrology (PK-H), flood mitigation (MB), flood-related economy (Ek), evaluation of flood events (Ev), influence of land change and climatology influence on hydrology (PL-PK-H), and hydrology (H). The theme of hydrology (H) is the dominant topic that we found in the literature as much as 30% of the theme of flood mitigation (MB) and 17% of the theme of the influence of land cover changes on hydrolgi (PL-H). The contribution of this paper is to develop a comprehensive framework that needs to be done in conducting flood management.

Fulltext View|Download
Keywords: Banjir; Pengelolaan banjir; Kerangka kerja holistik; Bencana; Manajemen lingkungan
Funding: IPB University

Article Metrics:

  1. A, J., Smith, & Baeck, M. L. (2015). ‘“Prophetic vision, vivid imagination”’: The 1927 Mississippi River flood. Journal of the American Water Resources Association, 51, 9964–9994. https://doi.org/10.1002/2015WR017927
  2. Adelekan, I. O. (2016). Flood risk management in the coastal city of Lagos, Nigeria. Journal of Flood Risk Management, 9(3), 255–264. https://doi.org/10.1111/jfr3.12179
  3. Ahn, J., Cho, W., Kim, T., Shin, H., & Heo, J. H. (2014). Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin. Water, 6, 3841–3863. https://doi.org/10.3390/w6123841
  4. Ahn, J. H., & Choi, H. Il. (2013). A New Flood Index For Use In Evaluation Of Local Flood Severity : A Case Study Of Small Ungauged Catchments In Korea 1. Journal of the American Water Resources Association, 49(1), 1–14
  5. Alexakis, D. D., Grillakis, M. G., Koutroulis, A. G., Agapiou, A., Themistocleous, K., Tsanis, I. K., Michaelides, S., Pashiardis, S., Demetriou, C., Aristeidou, K., Retalis, A., Tymvios, F., & Hadjimitsis, D. G. (2014). GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: The case study of Yialias basin in Cyprus. Natural Hazards and Earth System Sciences, 14, 413–426. https://doi.org/10.5194/nhess-14-413-2014
  6. Alexander, M., Viavattene, C., Faulkner, H., Priest, S., Alexander, M., & Hazard, F. (2014). Translating the complexities of flood risk science using KEEPER – a knowledge exchange exploratory tool for professionals in emergency response. Flood Risk Management, 7, 205–216. https://doi.org/10.1111/jfr3.12042
  7. Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. https://doi.org/10.1111/eft2.183
  8. Alfieri, L., Dottori, F., Betts, R., Salamon, P., & Feyen, L. (2018). Multi-Model Projections of River Flood Risk in Europe under Global Warming. Climate, 6(16), 1–19. https://doi.org/10.3390/cli6010016
  9. Ali, M. H., Bhattacharya, B., Islam, A. K. M. S., Islam, G. M. T., Hossain, M. S., & Khan, A. S. (2018). Challenges for flood risk management in flood-prone Sirajganj region of Bangladesh. Flood Risk Management, April, 1–12. https://doi.org/10.1111/jfr3.12450
  10. Ancey, C., Bardou, E., Funk, M., Huss, M., Werder, M. A., & Trewhela, T. (2019). Hydraulic Reconstruction of the 1818 Giétro Glacial Lake Outburst Flood. Water Resources Research, 55, 8840–8863. https://doi.org/10.1029/2019WR025274
  11. Antolini, F., Tate, E., Dalzell, B., Young, N., Johnson, K., & Hawthorne, P. L. (2020). Flood Risk Reduction from Agricultural Best Management Practices. Journal of the American Water Resources Association, 56(1), 161–179. https://doi.org/10.1111/1752-1688.12812
  12. Ariti, A. T., van Vliet, J., & Verburg, P. H. (2015). Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of perception and adaptation of stakeholders. Applied Geography, 65, 28–37. https://doi.org/10.1016/j.apgeog.2015.10.002
  13. Baldassarre, G. Di, Viglione, A., Carr, G., Kuil, L., Salinas, J. L., & Bloschl, G. (2013). Socio-hydrology: Conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17(8), 3295–3303. https://doi.org/10.5194/hess-17-3295-2013
  14. Barendrecht, M. H., McCarthy, S., & Viglione, A. (2021). A comparative analysis of the relationship between flood experience and private flood mitigation behaviour in the regions of England. Journal of Flood Risk Management, 14, 1–12. https://doi.org/10.1111/jfr3.12700
  15. Bates, N. S., Smith, J. A., & Villarini, G. (2015). Flood response for the watersheds of the Fernow Experimental Forest in the central Appalachians. Water Resources Research, 51, 4431–4453. https://doi.org/10.1002/2014WR015871
  16. Belihu, M., Tekleab, S., Abate, B., & Bewket, W. (2020). Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia. HydroResearch, 3, 85–94. https://doi.org/10.1016/j.hydres.2020.07.001
  17. Berghuijs, W. R., Woods, R. A., Hutton, C. J., & Sivapalan, M. (2016). Dominant flood generating mechanisms across the United States. Geophysical Research Letters, 4382–4390. https://doi.org/10.1002/2016GL068070
  18. Birch, C. E., Rabb, B. L., Böing, S. J., Shelton, K. L., Lamb, R., Hunter, N., Trigg, M. A., Hines, A., Taylor, A. L., Pilling, C., & Dale, M. (2021). Enhanced surface water flood forecasts: User-led development and testing. Journal of Flood Risk Management, 14(2), 1–15. https://doi.org/10.1111/jfr3.12691
  19. Bokhove, O., Kelmanson, M. A., Kent, T., Piton, G., & Tacnet, J. M. (2019). Communicating (nature-based) flood-mitigation schemes using flood-excess volume. River Research and Applications, 35, 1402–1414. https://doi.org/10.1002/rra.3507
  20. Bortoleto, L. A., Figueira, C. J. M., Dunning, J. B., Rodgers, J., & Da Silva, A. M. (2016). Suitability index for restoration in landscapes: An alternative proposal for restoration projects. Ecological Indicators, 60, 724–735. https://doi.org/10.1016/j.ecolind.2015.08.002
  21. Brocca, L., Melone, F., & Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25(18), 2801–2813. https://doi.org/10.1002/hyp.8042
  22. Bubeck, P., Botzen, W. J. W., Suu, L. T. T., & Aerts, J. C. J. H. (2012). Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5(4), 295–302. https://doi.org/10.1111/j.1753-318X.2012.01151.x
  23. Buchecker, M., Salvini, G., Baldassarre, G. Di, Semenzin, E., Maidl, E., & Marcomini, A. (2013). The role of risk perception in making flood risk management more effective. Natural Hazards and Earth System Sciences, 13, 3013–3030. https://doi.org/10.5194/nhess-13-3013-2013
  24. Budiyanto, S., Tarigan, S. D., Sinukaban, N., & Murtilaksono, K. (2015). The Impact of Land Use on Hydrological Characteristics in Kaligarang Watershed. International Journal of Science and Engineering, 8(2), 125–130. ttps://doi.org/10.12777/ijse.8.2.125-130
  25. Cassel, M. A., & Hinsberger, M. (2017). Flood partnerships: a participatory approach to develop and implement the Flood Risk Management Plans. Journal of Flood Risk Management, 10(2), 164–172. https://doi.org/10.1111/jfr3.12086
  26. Chebana, F., Dabo-niang, S., & Ouarda, T. B. M. J. (2012). Exploratory functional flood frequency analysis and outlier detection. Water Resources Research, 48, W04514. https://doi.org/10.1029/2011WR011040
  27. Chen, M., Zeng, L., Huang, Z., Lei, L., Shen, Y., & Xiao, W. (2021). Evaluating suitability of land for forest landscape restoration : A case study of Three Gorges Reservoir , China. Ecological Indicators, 127, 107765. https://doi.org/10.1016/j.ecolind.2021.107765
  28. Diakakis, M. (2014). Flood seasonality in Greece and its comparison to seasonal distribution of flooding in selected areas across southern Europe. Journal of Flood Risk Management. https://doi.org/10.1111/jfr3.12139
  29. Dinh, G. N., & McIntosh, B. S. (2019). An application of Integrated Water Resource Management principles to flood risk mitigation in Mossman, North Queensland, Australia. World Water Policy, 5, 138–160. https://doi.org/10.1002/wwp2.12011
  30. Dixon, S. J., Sear, D. A., Odoni, N. A., Sykes, T., & Lane, S. N. (2016). The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41(7), 997–1008. https://doi.org/10.1002/esp.3919
  31. Dottori, F., Martina, M. L. V., & Figueiredo, R. (2018). A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. Journal of Flood Risk Management, 11, S632–S645. https://doi.org/10.1111/jfr3.12234
  32. Duží, B., Vikhrov, D., Kelman, I., Stojanov, R., & Jurˇicˇka, D. (2017). Household measures for river flood risk reduction in the Czech Republic. Flood Risk Management, 10, 253–266. https://doi.org/10.1111/jfr3.12132
  33. Ge, Y., Li, X., Li, B., & Xing, H. (2015). Property loss compensation mechanism of flood risk in China. Journal of Flood Risk Management, 10, 474–486. https://doi.org/10.1111/jfr3.12160
  34. Gebremicael, T. G., Mohamed, Y. A., Betrie, G. D., van der Zaag, P., & Teferi, E. (2013). Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology, 482, 57–68. https://doi.org/10.1016/j.jhydrol.2012.12.023
  35. Gebremicael, T. G., Mohamed, Y. A., & Zaag, P. Van Der. (2019). Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling , alteration analysis and PLSR analysis. Science of the Total Environment, 660, 1155–1167. https://doi.org/10.1016/j.scitotenv.2019.01.085
  36. Gebru, B. M., Lee, W. K., Khamzina, A., Lee, S. gee, & Negash, E. (2019). Hydrological response of dry afromontane forest to changes in land use and land cover in northern Ethiopia. Remote Sensing, 11(16), 1905. https://doi.org/10.3390/rs11161905
  37. Getachew, H. E., & Melesse, A. M. (2012). The Impact of Land Use Change on the Hydrology of the Angereb Watershed, Ethiopia. International Journal of Water Sciences, 1(4), 1–7. https://doi.org/10.5772/56266
  38. Grabs, W. (2015). Benchmarking flood risk reduction in the Elbe River. Journal of Flood Risk Management, 9(4), 335–342. https://doi.org/10.1111/jfr3.12217
  39. Green, C. (2013). Competent authorities for the flood risk management plan – reflections on flood and spatial planning in England. Flood Risk Management. https://doi.org/10.1111/jfr3.12097
  40. Greenbaum, N., Wittenberg, L., Malkinson, D., & Inbar, M. (2021). Hydrological and sedimentological changes following the 2010-forest fire in the Nahal Oren Basin, Mt. Carmel Israel–a comparison to pre-fire natural rates. Catena, 196(August 2020), 104891. https://doi.org/10.1016/j.catena.2020.104891
  41. Gusyev, M., Gädeke, A., Cullmann, J., Magome, J., Sugiura, A., Sawano, H., & Takeuchi, K. (2016). Connecting global- and local-scale flood risk assessment: a case study of the Rhine River basin flood hazard. Journal of Flood Risk Management, 9(4), 343–354. https://doi.org/10.1111/jfr3.12243
  42. Guug, S. S., Abdul-ganiyu, S., & Kasei, R. A. (2020). HydroResearch Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch, 3, 124–133. https://doi.org/10.1016/j.hydres.2020.10.002
  43. Hălbac-Cotoară-Zamfir, R., Keesstra, S., & Kalantari, Z. (2019). The impact of political, socio-economic and cultural factors on implementing environment friendly techniques for sustainable land management and climate change mitigation in Romania. Science of the Total Environment, 654, 418–429. https://doi.org/10.1016/j.scitotenv.2018.11.160
  44. Haregeweyn, N., Tesfaye, S., Tsunekawa, A., Tsubo, M., Meshesha, D. T., Adgo, E., & Elias, A. (2015). Dynamics of land use and land cover and its effects on hydrologic responses: case study of the Gilgel Tekeze catchment in the highlands of Northern Ethiopia. Environmental Monitoring and Assessment, 187, 4090. https://doi.org/10.1007/s10661-014-4090-1
  45. Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D. T., Fenta, A. A., Nyssen, J., & Adgo, E. (2017). Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95–108. https://doi.org/10.1016/j.scitotenv.2016.09.019
  46. Hawker, L., Rougier, J., Archer, L., Yamazaki, D., Neal, J., & Bates, P. (2018). Implications of Simulating Global Digital Elevation Models for Flood Inundation Studies. Water Resources Research, 54, 7910–7928. https://doi.org/10.1029/2018WR023279
  47. Hostache, R., Chini, M., Giustarini, L., Neal, J., Kavetski, D., Wood, M., Corato, G., Pelich, R. M., & Matgen, P. (2018). Near-Real-Time Assimilation of SAR-Derived Flood Maps for Improving Flood Forecasts. Water Resources Research, 54(8), 5516–5535. https://doi.org/10.1029/2017WR022205
  48. Hurford, A. P., Parker, D. J., Priest, S. J., & Lumbroso, D. M. (2012). Validating the return period of rainfall thresholds used for Extreme Rainfall Alerts by linking rainfall intensities with observed surface water flood events. Flood Risk Management, 5, 134–142. https://doi.org/10.1111/j.1753-318X.2012.01133.x
  49. Jang, J. H., Yu, P. S., Yeh, S. H., Fu, J. C., & Huang, C. J. (2011). A probabilistic model for real-time flood warning based on deterministic flood inundation mapping. Hydrological Processes, 26, 1079–1089. https://doi.org/10.1002/hyp.8220
  50. Jedwab, R., & Vollrath, D. (2015). Urbanization without growth in historical perspective. Explorations in Economic History, 58, 1–21. https://doi.org/10.1016/j.eeh.2015.09.002
  51. Jongman, B., Winsemius, H. C., Aerts, J. C. J. H., Coughlan De Perez, E., Van Aalst, M. K., Kron, W., & Ward, P. J. (2015). Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 112(18), E2271–E2280. https://doi.org/10.1073/pnas.1414439112
  52. Kalyanapu, A. J., Judi, D. R., Mcpherson, T. N., & Burian, S. J. (2012). Monte Carlo-based flood modelling framework for estimating probability weighted flood risk. Journal of Flood Risk Management, 5, 37–48. https://doi.org/10.1111/j.1753-318X.2011.01123.x
  53. Karrasch, L., Restemeyer, B., & Klenke, T. (2021). The ‘Flood Resilience Rose’: A management tool to promote transformation towards flood resilience. Journal of Flood Risk Management, 14, 1–16. https://doi.org/10.1111/jfr3.12726
  54. Kassem, A. A., Raheem, A. M., Khidir, K. M., & Alkattan, M. (2020). Predicting of daily Khazir basin flow using SWAT and hybrid SWAT-ANN models. Ain Shams Engineering Journal, 11, 435–443. https://doi.org/10.1016/j.asej.2019.10.011
  55. Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9–20. https://doi.org/10.1016/j.foreco.2015.06.014
  56. Keith E. Schilling, Gassman, P. W., Kling, C. L., Campbell, T., Jha, M. K., Wolter, C. F., & Arnold, J. G. (2014). The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes, 28(8), 3314–3325. https://doi.org/10.1002/hyp.9865
  57. Kemter, M., Merz, B., Marwan, N., Vorogushyn, S., & Blöschl, G. (2020). Joint Trends in Flood Magnitudes and Spatial Extents Across Europe. Geophysical Research Letters, 46, 1–8. https://doi.org/10.1029/2020GL087464
  58. Kiptala, J. K., Mul, M. L., Mohamed, Y. A., & Van Der Zaag, P. (2014). Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa. Hydrology and Earth System Sciences, 18(6), 2287–2303. https://doi.org/10.5194/hess-18-2287-2014
  59. Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C. J. H., Apel, H., Aronica, G. T., Arnbjerg-Nielsen, K., Bouwer, L. M., Bubeck, P., Caloiero, T., Chinh, D. T., Cortès, M., Gain, A. K., Giampá, V., Kuhlicke, C., Kundzewicz, Z. W., Llasat, M. C., Mård, J., Matczak, P., Merz, B. (2017). Adaptation to flood risk: Results of international paired flood event studies. Earth’s Future, 5, 953–965. https://doi.org/10.1002/2017EF000606
  60. Lam, D., Thompson, C., Croke, J., Sharma, A., & Macklin, M. (2017). Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information. Water Resources Research, 53, 2312–2327. https://doi.org/10.1002/ 2016WR019959
  61. Lei, C., Wagner, P. D., & Fohrer, N. (2021). Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a German lowland catchment. Ecological Indicators, 120, 106940. https://doi.org/10.1016/j.ecolind.2020.106940
  62. Leinenkugel, P., Kuenzer, C., Oppelt, N., & Dech, S. (2013). Characterisation of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas - A novel product for the Mekong Basin. Remote Sensing of Environment, 136, 180–198. https://doi.org/10.1016/j.rse.2013.05.004
  63. Lendering, K. T., Jonkman, S. N., & Kok, M. (2015). Effectiveness of emergency measures for flood prevention. Journal of Flood Risk Management, 9, 320–334. https://doi.org/10.1111/jfr3.12185
  64. Lewis, S. E., Bartley, R., Wilkinson, S. N., Bainbridge, Z. T., Henderson, A. E., James, C. S., Irvine, S. A., & Brodie, J. E. (2021). Land use change in the river basins of the Great Barrier Reef , 1860 to 2019 : A foundation for understanding environmental history across the catchment to reef continuum. Marine Pollution Bulletin, 166, 112193. https://doi.org/10.1016/j.marpolbul.2021.112193
  65. Liu, S., Li, X., Chen, D., Duan, Y., Ji, H., Zhang, L., Chai, Q., & Hu, X. (2020). Understanding Land use/Land cover dynamics and impacts of human activities in the Mekong Delta over the last 40 years. Global Ecology and Conservation, 22, e00991. https://doi.org/10.1016/j.gecco.2020.e00991
  66. Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., Li, X., & Sang, Y. F. (2016). A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. Journal of Hydrology, 538, 82–95. https://doi.org/10.1016/j.jhydrol.2016.04.006
  67. Lopez, M. G., Baldassarre, G. Di, & Seibert, J. (2016). Impact of social preparedness on flood early warning systems. Water Resources Research, 522–534. https://doi.org/10.1002/2016WR019387.Received
  68. Lun, D., Fischer, S., Viglione, A., & Blöschl, G. (2020). Detecting Flood ‐ Rich and Flood ‐ Poor Periods in Annual Peak Discharges Across Europe. Water Resources Research, 56, 1–22. https://doi.org/10.1029/2019WR026575
  69. Mararakanye, N., Le Roux, J. J., & Franke, A. C. (2020). Using satellite-based weather data as input to SWAT in a data poor catchment. Physics and Chemistry of the Earth, 117(April 2019), 102871. https://doi.org/10.1016/j.pce.2020.102871
  70. Maskrey, S. A., Priest, S., & Mount, N. J. (2019). Towards evaluation criteria in participatory flood risk management. Journal of Flood Risk Management, 12, 1–14. https://doi.org/10.1111/jfr3.12462
  71. McEwen, L., Garde-Hansen, J., Holmes, A., Jones, O., & Krause, F. (2017). Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk. Transactions of the Institute of British Geographers, 42, 14–28. https://doi.org/10.1111/tran.12149
  72. Mohor, G. S., Hudson, P., & Thieken, A. H. (2020). A Comparison of Factors Driving Flood Losses in Households Affected by Different Flood Types. Water Resources Research, 54, 1–20. https://doi.org/10.1029/2019WR025943
  73. Molina-Navarro, E., Andersen, H. E., Nielsen, A., Thodsen, H., & Trolle, D. (2017). The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environmental Modelling and Software, 93, 255–267. https://doi.org/10.1016/j.envsoft.2017.03.018
  74. Nakamura, S., & Oki, T. (2018). Paradigm Shifts on Flood Risk Management in Japan: Detecting Triggers of Design Flood Revisions in the Modern Era. Water Resources Research, 54, 5504–5515. https://doi.org/10.1029/2017WR022509
  75. Negash, E., Gebresamuel, G., Embaye, T. A. ., & Zenebe, A. (2019). The Effect Of Climate And Land-Cover Changes On Runoff Response In Guguf Spate Systems, Northern Ethiopia. Irrigation And Drainage. https://doi.org/10.1002/ird.2326
  76. Niedzielski, P., & Skolasin, K. (2015). Environmental impact of flooding : studies of ‘ self-cleaning ’ of river ecosystem during consecutive flood events. Journal of Flood Risk Management, 1–11. https://doi.org/10.1111/jfr3.12209
  77. Nye, M., Tapsell, S., & Ross, C. T. (2011). New social directions in UK flood risk management: Moving towards flood risk citizenship? Journal of Flood Risk Management, 4(4), 288–297. https://doi.org/10.1111/j.1753-318X.2011.01114.x
  78. Penning-Rowsell, E. C. (2015). A realistic assessment of fluvial and coastal flood risk in England and Wales. Transactions of the Institute of British Geographers, 40, 44–61. https://doi.org/10.1111/tran.12053
  79. Pinter, N., Dierauer, J., & Remo, J. W. F. (2012). Flood-loss modelling for assessing impacts of flood-frequency adjustment, Middle Mississippi River, USA. Hydrological Processes, 26, 2997–3002. https://doi.org/10.1002/hyp.9321
  80. Pohl, R. (2020). Quantifying resilience in hydraulic engineering : Floods , flood records , and resilience in urban areas. WIREs WATER, 7, 1–13. https://doi.org/10.1002/wat2.1431
  81. Rodríguez, S. O., Wang, L. P., Thraves, L., Onof, C., & Johnston, A. (2018). Surface water flood warnings in England: overview, assessment and recommendations based on survey responses and workshops. Journal of Flood Risk Management, 11, S211–S221. https://doi.org/10.1111/jfr3.12195
  82. Romero, B. R., Wanders, N., Burek, P., Salamon, P., & Roo, A. de. (2016). Integrating remotely sensed surface water extent into continental scale hydrology. Journal of Hydrology, 543, 659–670. https://doi.org/10.1016/j.jhydrol.2016.10.041
  83. Samimi, M., Mirchi, A., Moriasi, D., Ahn, S., Alian, S., Taghvaeian, S., & Sheng, Z. (2020). Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies. Journal of Hydrology, 590, 125418. https://doi.org/10.1016/j.jhydrol.2020.125418
  84. Sanders, B. F., Schubert, J. E., Goodrich, K. A., & Houston, D. (2019). Collaborative Modeling With Fine ‐ Resolution Data Enhances Flood Awareness , Minimizes Differences in Flood Perception , and Produces Actionable Flood Maps Earth ’ s Future. Earth’s Future, 7, 1–23. https://doi.org/10.1029/2019EF001391
  85. Santos, P. P., & Reis, E. (2018). Assessment of stream flood susceptibility: a cross-analysis between model results and flood losses. Journal of Flood Risk Management, 11, S1038–S1050. https://doi.org/10.1111/jfr3.12290
  86. Sapriza-Azuri, G., Jodar, J., Navarro, V., Slooten, L. J., Carrera, J., & Gupta, H. V. (2015). Impacts of rainfall spatial variability on hydrogeological response. Water Resources Research, 51. https://doi.org/10.1002/2014WR016168
  87. Schulz, J. J., & Schröder, B. (2017). Identifying suitable multifunctional restoration areas for Forest Landscape Restoration in Central Chile. Ecosphere, 8(1), e01644. https://doi.org/10.1002/ecs2.1644
  88. Shi, W., Yu, X., Liao, W., Wang, Y., & Jia, B. (2013). Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China. Journal of Hydrology, 495, 197–207. https://doi.org/10.1016/j.jhydrol.2013.05.002
  89. Shiferaw, H., Bewket, W., Alamirew, T., Zeleke, G., Teketay, D., Bekele, K., Schaffner, U., & Eckert, S. (2019). Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Science of the Total Environment, 675, 354–366. https://doi.org/10.1016/j.scitotenv.2019.04.220
  90. Shrestha, B. B., Okazumi, T., Miyamoto, M., & Sawano, H. (2015). Flood damage assessment in the Pampanga river basin of the Philippines. Journal of Flood Risk Management, 9, 355–369. https://doi.org/10.1111/jfr3.12174
  91. Shtober-Zisu, N., Tessler, N., Tsatskin, A., & Greenbaum, N. (2015). Accelerated weathering of carbonate rocks following the 2010 wildfire on Mount Carmel, Israel. International Journal of Wildland Fire, 24(8), 1154–1167. https://doi.org/10.1071/WF14221
  92. Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2011). Socio-hydrology: A new science of people and water. Hydrological Processes, 26(8), 1270–1276. https://doi.org/10.1002/hyp.8426
  93. Slater, L. J., & Villarini, G. (2016). Recent trends in U.S. flood risk. Geophysical Research Letters, 43, 12,428-12,436. https://doi.org/10.1002/2016GL071199
  94. Smith, J. A., Cox, A. A., Baeck, M. L., Yang, L., Bates, P., & Al, S. E. T. (2018). Strange Floods : The Upper Tail of Flood Peaks in the United States. Water Resources Research, 54, 6510–6542. https://doi.org/10.1029/2018WR022539
  95. Snel, K. A. W., Priest, S. J., Hartmann, T., Witte, P. A., & Geertman, S. C. M. (2021). ‘Do the resilient things.’ Residents’ perspectives on responsibilities for flood risk adaptation in England. Journal of Flood Risk Management, 14, 1–14. https://doi.org/10.1111/jfr3.12727
  96. Solín, L., Madajová, M., & Skubincˇan, P. (2015). Mitigating flood consequences: analysis of private flood insurance in Slovakia. Journal of Flood Risk Management, 11, S173–S185. https://doi.org/10.1111/jfr3.12191
  97. Speight, L. J., Cranston, M. D., White, C. J., & Kelly, L. (2021). Operational and emerging capabilities for surface water flood forecasting. WIREs WATER, 8:e1517. https://doi.org/10.1002/wat2.1517
  98. Stein, L., Pianosi, F., & Woods, R. (2020). Event-based classification for global study of river flood generating processes. Hydrological Processes, 34, 1514–1529. https://doi.org/10.1002/hyp.13678
  99. Sung, K., Jeong, H., Sangwan, N., & Yu, D. J. (2018). Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances Water Resources Research. Water Resources Research, 54, 2661–2680. https://doi.org/10.1002/2017WR021440
  100. Surminski, S., & Eldridge, J. (2015). Flood insurance in England – an assessment of the current and newly proposed insurance scheme in the context of rising flood risk. Journal of Flood Risk Management, 10, 415–435. https://doi.org/10.1111/jfr3.12127
  101. Tarasova, L., Blöschl, G., Kiss, A., Merz, B., Viglione, A., Plötner, S., Schumann, A., Krug, A., Pidoto, R., Primo, C., Lun, D., & Müller-thomy, H. (2019). Causative classification of river flood events. WIREs WATER, 1–23. https://doi.org/10.1002/wat2.1353
  102. Toté, C., Patricio, D., Boogaard, H., van der Wijngaart, R., Tarnavsky, E., & Funk, C. (2015). Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, 7, 1758–1776. https://doi.org/10.3390/rs70201758
  103. Tran, H., Tran, T., & Kervyn, M. (2015). Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A Remote sensing analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam. Remote Sensing, 7, 2899–2925. https://doi.org/10.3390/rs70302899
  104. Trumbore, S., Brando, P., & Hartmann, H. (2015). Boreal forest health and global change. Science, 349(6250), 819–822. https://doi.org/10.1126/science.aaa9092
  105. Turzewski, M. D., Huntington, K. W., & LeVeque, R. J. (2019). The Geomorphic Impact of Outburst Floods : Integrating Observations and Numerical Simulations of the 2000 Yigong Flood , Eastern Himalaya Journal of Geophysical Research : Earth Surface. JGR Earth Surface, 124, 1056–1079. https://doi.org/10.1029/2018JF004778
  106. Vávra, J., Lapka, M., Cudlínová, E., & Dvořáková-Líšková, Z. (2015). Local perception of floods in the Czech Republic and recent changes in state flood management strategies. Journal of Flood Risk Management, 10, 238–252. https://doi.org/10.1111/jfr3.12156
  107. Veldhuis, J. A. E. ten. (2011). How the choice of flood damage metrics influences urban flood risk assessment. Journal of Flood Risk Management, 4, 281–287. https://doi.org/10.1111/j.1753-318X.2011.01112.x
  108. Wang, F., Wang, L., Zhou, H., Valeriano, O. C. S., Koike, T., & Li, W. (2012). Ensemble hydrological prediction-based real-time optimization of a multiobjective reservoir during flood season in a semiarid basin with global numerical weather predictions. Water Resources Research, 48, 1–21. https://doi.org/10.1029/2011WR011366
  109. Wang, X., Zhang, J., & Babovic, V. (2016). Improving real-time forecasting of water quality indicators with combination of process-based models and data assimilation technique. Ecological Indicators, 66, 428–439. https://doi.org/10.1016/j.ecolind.2016.02.016
  110. Wang, Y., Liu, Y., & Jin, J. (2018). Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the Poyang Lake Basin, China. Forests, 9, 217. https://doi.org/10.3390/f9040217
  111. Wazneh, H., Chebana, F., & Ouarda, T. B. M. J. (2013). Depth-based regional index-flood model. Water Resources Research, 49, 7957–7972. https://doi.org/10.1002/2013WR013523
  112. Webber, J. L., Chen, A. S., Stevens, J., Henderson, R., Djordjević, S., & Evans, B. (2021). Targeting property flood resilience in flood risk management. Journal of Flood Risk Management, 14, 1–18. https://doi.org/10.1111/jfr3.12723
  113. Welde, K., & Gebremariam, B. (2017). Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research, 5(1), 1–16. https://doi.org/10.1016/j.iswcr.2017.03.002
  114. Winsemius, H. C., Aerts, J. C. J. H., Van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., Van Vuuren, D. P., & Ward, P. J. (2015). Global drivers of future river flood risk. Nature Climate Change, 6(4), 381–385. https://doi.org/10.1038/nclimate2893
  115. Wondie, M., Schneider, W., Melesse, A. M., & Teketay, D. (2011). Spatial and temporal land cover changes in the simen mountains national park, a world heritage Site in northwestern Ethiopia. Remote Sensing, 3, 752–766. https://doi.org/10.3390/rs3040752
  116. Wrachien, D. De, Mambretti, S., & Schultz, B. (2011). Flood management and risk assessment in flood-prone areas: Measures and solutions. Irrigation and Drainage, 60, 229–240. https://doi.org/10.1002/ird.557
  117. Wyncoll, D., & Gouldby, B. (2015). Integrating a multivariate extreme value method within a system flood risk analysis model. Journal of Flood Risk Management, 8, 145–160. https://doi.org/10.1111/jfr3.12069
  118. Yang, L., Li, J., Sun, H., Guo, Y., & Engel, B. . (2018). Calculation of nonstationary flood return period considering historical extraordinary flood events. Flood Risk Management, e12463, 1–10. https://doi.org/10.1111/jfr3.12463
  119. Zhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585, 124822. https://doi.org/10.1016/j.jhydrol.2020.124822
  120. Zhang, L., Nan, Z., Xu, Y., & Li, S. (2016). Hydrological impacts of land use change and climate variability in the headwater region of the Heihe River Basin, northwest China. PLoS ONE, 11(6), 1–25. https://doi.org/10.1371/journal.pone.0158394
  121. Zhao, M., Boll, J., & Brooks, E. S. (2021). Evaluating the effects of timber harvest on hydrologically sensitive areas and hydrologic response. Journal of Hydrology, 593, 125805. https://doi.org/10.1016/j.jhydrol.2020.125805
  122. Zhou, T., & Penning-Rowsell, E. (2021). China ’ s ‘ Sponge Cities ’: The role of constructed wetlands in alleviating urban pluvial flooding. Water and Environment Journal, 00, 1–14. https://doi.org/10.1111/wej.12705
  123. Zhou, Z., Smith, J. A., Yang, L., Baeck, M. L., Chaney, M., Veldhuis, M. Ten, Deng, H., Liu, S., & Al, Z. E. T. (2017). The complexities of urban flood response: Flood frequency analyses for the Charlotte metropolitan region. Water Resources Research, 53, 7401–7425. https://doi.org/10.1002/2016WR019997
  124. Zsoter, E., Prudhomme, C., Stephens, E., Pappenberger, F., & Cloke, H. (2020). Using ensemble reforecasts to generate flood thresholds for improved global flood forecasting. Flood Risk Management, e12658. https://doi.org/10.1111/jfr3.12658

Last update:

No citation recorded.

Last update: 2024-04-16 22:44:56

No citation recorded.