skip to main content

Pengaruh Penambahan Gliserol Mentah Limbah Industri Biodiesel Terhadap Produksi Biogas dari Kotoran Sapi Menggunakan Anaerobic Digester Sistem Batch

1Jurusan Teknik Lingkungan Program Pascasarjana Universitas Andalas, Indonesia

2Program Pascasarjana Universitas Andalas, Indonesia

Received: 18 Feb 2022; Revised: 4 Mar 2022; Accepted: 10 Mar 2022; Available online: 18 Mar 2022; Published: 4 Jul 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Biogas adalah gas yang dihasilkan oleh aktivitas anaerobik dalam menguraikan bahan organik dengan kandungan utama metana (CH4) dan karbon diokasida (CO2). Penelitian ini bertujuan untuk menganalisis pengaruh gliserol mentah dengan campuran kotoran sapi dalam memproduksi biogas. Digester menggunakan sistem batch skala laboratorium. Variasi pada penelitian ini adalah campuran kotoran sapi dengan penambahan gliserol mentah sebanyak 0, 4, 8, dan 12%. Semua variasi dengan volume total 350 mL. Pengukuran volume biogas dilakukan setiap hari. Pengukuran konsentrasi CH4 dan CO2 diukur menggunakan alat Geotech Biogas 5000 analyzer. Parameter yang diukur adalah COD, BOD, TS dan VS dan untuk pH diukur di awal serta di akhir proses. Suhu lingkungan diukur setiap hari dengan interval waktu selama 30 menit menggunakan alat Weather Station model PCE-FWS 20. Hasil penelitian menunjukkan lama waktu yang dibutuhkan untuk memproduksi biogas adalah 14 hari. Volume biogas tertinggi adalah 836 mL, pada variasi penambahan gliserol mentah 12%. Gliserol mentah yang ditambahkan memiliki COD 475,2 mg/L, BOD 133,22 mg/L, TS 20% dan VS 14,8%. Konsentrasi CH4 tertinggi juga didapatkan dari variasi penambahan gliserol mentah 12% yaitu 44,1%. Sedangkan volume biogas terendah adalah 292 mL pada digester tanpa penambahan gliserol mentah. Konsentrasi CH4 terendah didapatkan pada variasi penambahan gliserol mentah 8% yaitu 15,5%. Identifikasi bakteri yang berperan dalam proses produksi biogas berdasarkan uji biokimia dengan Bergey’s manual adalah genus Bacillus. Bakteri ini berperan dalam proses pendegradasi bahan organik yang ada di dalam digester. 

ABSTRACT

Biogas is a gas produced by anaerobic activity in decomposing organic matter with the main content of methane (CH4) and carbon dioxide (CO2). This study aims to analyze the effect of crude glycerol with a mixture of cow dung in producing biogas. The digester used in this research was a laboratory-scale batch system. The variation in this study was a mixture of cow dung with the addition of 0, 4, 8, and 12% crude glycerol. All variations with a total volume of 350 mL. The measurement of the biogas volume was carried out every day. Measurements of CH4 and CO2 concentrations were measured using a Geotech Biogas 5000 analyzer. The COD, BOD, TS, and VS, and pH parameters were measured at the beginning and the end of the process. With parameters COD 475.2 mg/L, BOD 133.22 mg/L, TS 20%, and VS 14.8%. The ambient temperature was measured every 30 minutes using a PCE-FWS 20 Weather Station model. The results showed that the length of time needed to produce biogas was 14 days. The highest biogas volume was 836 mL, when 12% cured glycerol was added. The highest CH4 concentration of 44,1% was also obtained from variations in the addition of 12% crude glycerol. The lowest biogas volume of 292 mL was obtained from the absence of crude glycerol in the reactor. The lowest CH4 concentration was found in the variation of the addition of 8% crude glycerol, namely 15.5%. Identification of bacteria that play a role in the biogas production process based on biochemical tests using Bergey's manual is the Bacillus genus. These bacteria contribute in these bacteria contribute in organic matter degradation inside the digester.

Fulltext View|Download
Keywords: Bacillus; batch digester; biogas; gliserol mentah; konsentrasi CH4.
Funding: Universitas Andalas

Article Metrics:

  1. Abercrombie, M, D., Boutaiba, S., Bhatnagar, T., Hacene, H., Mitchell, D. A., & Baratti, J. C. (1990). Peliczar, Michael J, dkk, 1986. “Dasar – Dasar Mikrobiologi” Universitas Indonesia;Jakarta. In Journal of Molecular Catalysis B: Enzymatic (Vol. 41, Issues 1–2). Erlangga
  2. Budiyanto, M. A. K. (2011). Tipologi Pendayagunaan Kotoran Sapi Dalam Upaya Mendukung Pertanian Organik Di Desa Sumbersari Kecamatan Poncokusumo Kabupaten Malang. Gamma, 7(1), 42–49
  3. Catur, M., & Priyanti, A. (2017). Kajian Karakteristik Digester Kotoran Sapi Berdasarkan Komposisi Air Berbasis Kinetika Gas Metana untuk Produksi Biogas. Jurnal Ilmiah. Studi Teknik Pertanian Fakultas Teknologi Pangan dan Agroindustri P. https://dx.doi.org/10.29303/jrpb.v5i1.38
  4. Cappuccino, J. G., & Sherman, N. (2014). Manual Laboratory Mikrobiolgi. In Clinical application. Buku Penerbit Kedokteran EGC
  5. Chou, Y., & Su, J. (2019). Biogas Production by Anaerobic Co-Digestion of Dairy Wastewater with the Crude Glycerol from Slaughterhouse Sludge Cake Transesterification. Journal Animals 9(618), 1-17. https://dx.doi.org/10.3390%2Fani9090618
  6. Dasari, M. A., Kiatsimkul, P. P., Sutterlin, W. R., & Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: General, 281(1–2), 225–231. https://doi.org/10.1016/j.apcata.2004.11.033
  7. Diwani, G. El, Attia, N. K., & Hawash, S. I. (2009). Development and evaluation of biodiesel fuel and by-products from jatropha oil. Int. J. Environ. Sci. Tech, 6(2), 219–224
  8. Fountoulakis, M. S., & Manios, T. (2009). Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresource Technology, 100(12), 3043–3047. https://doi.org/10.1016/j.biortech.2009.01.016
  9. Fountoulakis, M. S., Petousi, I., & Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Management, 30(10), 1849–1853. https://doi.org/10.1016/j.wasman.2010.04.011
  10. Garrity, G. M., & Holt, J. G. (2001). The Road Map to the Manual. In Bergey’s Manual® of Systematic Bacteriology. https://doi.org/10.1007/978-0-387-21609-6_15
  11. Hatmanti, A. (2000). Pengenalan Bacillus Spp. In Oseanagrafi (Vol. XXV, pp. 31–41)
  12. Hazimah, a H., Ooi, T. L., & Salmiah, a. (2003). Recovery of Glycerol and Diglycerol From Glycerol Pitch Recovery of Glycerol and Diglycerol From Glycerol Pitch. Journal of Oil Palm Research, 15(1), 1–5
  13. Ken, R., Wibowo, A., Jati, N., Indah, L., & Yulianti, M. (2019). The Role of Indigenous Bacteria in Degrading Liquid Waste of Tofu Production. Biota, Vol 4(1), 8–15
  14. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. In Waste Management (Vol. 31, Issue 8, pp. 1737–1744). https://doi.org/10.1016/j.wasman.2011.03.021
  15. Kim, J. K., Oh, B. R., Chun, Y. N., & Kim, S. W. (2006). Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. Journal of Bioscience and Bioengineering, 102(4), 328–332. https://doi.org/10.1263/jbb.102.328
  16. Kim, J., Park, C., Kim, T., Lee, M., Kim, S., Eung-wook Kim, S., & Lee, J. (n.d.). Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. In Journal of Biosienc and Bioengineering (Vol. 95, Issue 3)
  17. Kolesárová, N., Hutan, M., Bodík, I., & Špalková, V. (2011). Utilization of biodiesel by-products for biogas production. In Journal of Biomedicine and Biotechnology (Vol. 2011). https://doi.org/10.1155/2011/126798
  18. Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002
  19. Li, A., Chu, nan, Wang, X., Ren, L., Yu, J., Liu, X., Yan, J., Zhang, L., Wu, S., & Li, S. (2013). A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. http://www.biotechnologyforbiofuels.com/content/6/1/3
  20. Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. In Renewable and Sustainable Energy Reviews (Vol. 15, Issue 1, pp. 821–826). Elsevier Ltd. https://doi.org/10.1016/j.rser.2010.07.042
  21. Orskov, E. R., Yongabi Anchang, K., Subedi, M., & Smith, J. (2014). Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa. Biomass and Bioenergy, 70, 4–16. https://doi.org/10.1016/j.biombioe.2014.02.028
  22. Robra, S., Serpa da Cruz, R., de Oliveira, A. M., Neto, J. A. A., & Santos, J. V. (2010). Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry. Biomass and Bioenergy, 34(9), 1330–1335. https://doi.org/10.1016/j.biombioe.2010.04.021
  23. Seadi, T. A., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook. In Igarss 2014 (Issue 1). www.lemvigbiogas.com
  24. Schnürer, A., & Jarvis, Å. (2009). Microbiological Handbook for Biogas Plants Swedish Waste Management U2009:03 Swedish Gas Centre Report 207. www.avfallsverige.se
  25. Trzcinski, A. P., & Stuckey, D. C. (2010). Treatment of municipal solid waste leachate using a submerged anaerobic membrane bioreactor at mesophilic and psychrophilic temperatures: Analysis of recalcitrants in the permeate using GC-MS. Water Research, 44(3), 671–680. https://doi.org/10.1016/j.watres.2009.09.043
  26. Valerie J, B. (2006). Biogas : A bright Idea For Africa. Vol 114 No 5. Environmental Health Perspectives
  27. Viana, M. B., Freitas, A. V., Leitão, R. C., & Santaella, S. T. (2012). Biodegradability and methane production potential of glycerol generated by biodiesel industry. Water Science and Technology, 66(10), 2217–2222. https://doi.org/10.2166/wst.2012.455
  28. Volk. (1993). Mikrobiologi Dasar Jilid 1. In Microbiology. Gramedia
  29. Wahyuni, S. (2015). Panduan Praktis Biogas. In Penebar Swadaya. Jakarta: Gramedia
  30. Walter Borges de Oliveira, S. V., Leoneti, A. B., Magrini Caldo, G. M., & Borges de Oliveira, M. M. (2011). Generation of bioenergy and biofertilizer on a sustainable rural property. Biomass and Bioenergy, 35(7), 2608–2618. https://doi.org/10.1016/j.biombioe.2011.02.048
  31. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. In Bioresource Technology (Vol. 99, Issue 17, pp. 7928–7940). https://doi.org/10.1016/j.biortech.2008.02.044
  32. Weiland, P. (2010). Biogas production: Current state and perspectives. In Applied Microbiology and Biotechnology (Vol. 85, Issue 4, pp. 849–860). Springer Verlag. https://doi.org/10.1007/s00253-009-2246-7
  33. Wulandari, C., & Labiba, Q. (2017). Pembuatan Biogas dari Campuran Kulit Pisang dan Kotoran Sapi menggunakan Bioreaktor Anaerobik. Skripsi. Universitas Negeri Islam Malang
  34. Zhang, T., Liu, L., Song, Z., Ren, G., Feng, Y., Han, X., & Yang, G. (2013). Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0066845

Last update:

No citation recorded.

Last update: 2025-01-22 10:10:24

No citation recorded.