skip to main content

Critical Level of Chromium for Rice in Different Soil Type

Indonesian Agricultural Environment Research Institute, Indonesia

Received: 30 Mar 2022; Revised: 9 Jan 2023; Accepted: 10 Jan 2023; Available online: 27 Jan 2023; Published: 27 Jan 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract

The increasing number of industries and poor treatment of waste will damage environmental health, including agricultural land. Agricultural products from contaminated soil may contain hazardous heavy metals such as chromium which can be harmful to human health if consumed. Examination and determination of chromium critical level in paddy soil are required to evaluate the threshold of heavy metals to disable to distribute into paddy plants. This study aims to obtain the critical level of chromium in light and heavy textured soils with paddy as a plant indicator. The pot experiment was carried out at the greenhouse using a completely randomized design with two factors are heavy metal concentration (Cr) and soil texture (A) and five times repeated. The chromium adsorption test uses the Langmuir approach method.  Chromium sorption in heavy-textured soil is higher than in light-textured soil. The maximum sorption of chromium metal in light-textured soil is 87.719 mg kg-1, while in heavy-textured soil is 204.082 mg kg-1. Total chromium in the soil decreases after harvest and reduces rice yields. The critical level of light-textured soil chromium in rice was 0.861 mg kg-1, while the critical level for heavy-textured soil Chromium in rice was 1.012 mg kg-1.

Fulltext View|Download
Keywords: Chromium, Critical level, Paddy Soil, Heavy metal
Funding: Indonesian Agricultural Environment Research Institute

Article Metrics:

  1. Alloway, B.J. 2010. Heavy metals in soils. 3rdEd. Blackie Academic & Professional, London
  2. Dirjen POM. 1989. Attachment to the Decree of the Indonesian Food and Drug Authority No. 03725lB / SKNII/89 abaout Minimum Limit of Metal Contamination in Food. 103-109, in the Food Technology and Industry Bulletin. Vol: VI No.2 th. 1995. (In Bahasa)
  3. El-Kammar, A. M., Ali, B. H., & El-Badry, A. M. M. 2009. Environmental geochemistry of river nile bottom sediments between Aswan and Isna, upper Egypt. Journal of Applied Sciences Research, 5(6), 585–594
  4. Eviati and Sulaeman. 2012. Technical guidelines for chemical analysis of soil, plants, water and fertilizers. Indonesian Agency for Agricultural Research and Development. Ministry of Agriculture Republik Indonesia, Jakarta. Indonesia. (In Bahasa)
  5. Feng, Z., Hu, W., Rom, W. N., Costa, M., & Tang, M. S. 2003. Chromium(VI) exposure enhances polycyclic aromatic hydrocarbon-DNA binding at the p53 gene in human lung cells. Carcinogenesis, 24(4), 771–778. https://doi.org/10.1093/carcin/bgg012
  6. Fox, R. L., & Kamprath, E. J. 1970. Phosphate Sorption Isotherms for Evaluating the Phosphate Requirements of Soils. Soil Science Society of America Journal, 34(6), 902–907. https://doi.org/10.2136/sssaj1970.03615995003400060025x
  7. Hasegawa, H., Rahman, I. M. M., & Rahman, M. A. 2015. Environmental Remediation Technologies for Metal-Contaminated Soils. Environmental Remediation Technologies for Metal-Contaminated Soils, 1–254. https://doi.org/10.1007/978-4-431-55759-3
  8. Huffman, E. W. D., & Allaway, W. H. 1973. Chromium in Plants: Distribution in Tissues, Organelles, and Extracts and Availability of Bean Leaf Cr to Animals. Journal of Agricultural and Food Chemistry, 21(6), 982–986. https://doi.org/10.1021/jf60190a008
  9. Jiwan, S., & Ajay, K. 2011. Effects of Heavy Metals on Soil, Plants, Human Health and Aquatic Life. International Journal of Research in Chemistry and Environment, 1(2), 15–21. www.ijrce.org
  10. Komarawidjaja, W. 2016. Sebaran Limbah Cair Industri Tekstil dan Dampaknya di Beberapa Desa Kecamatan Rancaekek Kabupaten Bandung Outspread of Textile Industry Waste Water and its Impact to a Number of Villages in Rancaekek District, Bandung Regency. Teknologi Lingkungan, 17, 118–125
  11. Komarawidjaja, W. 2017. Paparan Limbah Cair Industri Mengandung Logam Berat pada Lahan Sawah di Desa Jelegong, Kecamatan Rancaekek, Kabupaten Bandung. Jurnal Teknologi Lingkungan, 18(2), 173. https://doi.org/10.29122/jtl.v18i2.2047
  12. Kurnia, U., Sudirman, Haryono and Kusnadi H. 2003.” Research on Metal Gilding Industry Pollution on Rice Fields”. Paper presented in National Seminar on Land Resources and Climate Technology Innovations. Bogor, 14-15 Oktober 2003. Center for Research and Development of Soil and Agroclimate, Bogor. (In Bahasa)
  13. Murray, K. J., Mozafarzadeh, M. L., & Tebo, B. M. 2005. Cr(III) oxidation and Cr toxicity in cultures of the manganese(II)-oxidizing Pseudomonas putida strain GB-1. Geomicrobiology Journal, 22(3–4), 151–159. https://doi.org/10.1080/01490450590945988
  14. Ogunkunle, C. O., Varun, M., Olushola, O. E., & Fatoba, P. O. 2017. Spatial distribution of some toxic metals in topsoil and bioaccumulation in wild flora around a metal scrap factory: A case of southwestern Nigeria. Journal of Environmental Science and Management, 20(1), 1–9
  15. Paulose, B., Datta, S. P., Rattan, R. K., & Chhonkar, P. K. 2007. Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environmental Pollution, 146(1), 19–24. https://doi.org/10.1016/j.envpol.2006.06.016
  16. Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. 2009. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. International Journal of Biochemistry and Cell Biology, 41(8–9), 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005
  17. Rogers, S. L., McLaughlin, M. ., R.E, H., McLaren, R. ., & Speir, T. W. 2000. Journal of Soil Research. 38
  18. Rohmawati, S. M., Sutarno, S., & Mujiyo, M. 2018. Hubungan Jumlah Logam Kromium (Cr) Pada Air Irigasi, Tanah Sawah Dan Gabah Di Kawasan Industri Di Kecamatan Kebakkramat Kabupaten Karanganyar. Caraka Tani: Journal of Sustainable Agriculture, 32(1), 14. https://doi.org/10.20961/carakatani.v32i1.15898
  19. Schiavon, M., Pilon-Smits, E. A. H., Wirtz, M., Hell, R., & Malagoli, M. 2008. Interactions between Chromium and Sulfur Metabolism in Brassica juncea . Journal of Environmental Quality, 37(4), 1536–1545. https://doi.org/10.2134/jeq2007.0032
  20. Suganda, H., D. Setyorini, H. Kusnadi, I. Saripin, and Undang Kurnia. 2003.” Evaluation of industrial waste pollution for the sustainability of lowland resources”. hlm. 203-221 in Proceedings of the National Seminar on Multifunction and Conversion of Agricultural Land. Bogor 2 October and Jakarta, 25 October 2002. Center for Research and Development of Soil and Agroclimate. Bogor. (In Bahasa)
  21. Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., & Baskaran, L. 2010. Chromium stress in paddy: (i) Nutrient status of paddy under chromium stress; (ii) Phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus - Biologies, 333(8), 597–607. https://doi.org/10.1016/j.crvi.2010.03.002
  22. Tarradellas, J. and Bitton, G. 1997. Chemical pollutants in soil (pp. 53-84). New York, USA: Lewis Publishers CRC Press
  23. Turpeinen, R., Kairesalo, T., & Häggblom, M. M. 2004. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiology Ecology, 47(1), 39–50. https://doi.org/10.1016/S0168-6496(03)00232-0
  24. Wijayanti, A., Susatyo, E. B., & Kurniawan, C. 2018. Adsorpsi Logam Cr(VI) Dan Cu(II) Pada Tanah Dan Pengaruh Penambahan Pupuk Organik. Indonesian Journal of Chemical Science, 7(3), 242–248
  25. Xie, L., Hao, P., Cheng, Y., Ahmed, I. M., & Cao, F. 2018. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety, 162(June), 71–76. https://doi.org/10.1016/j.ecoenv.2018.06.072
  26. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91. https://doi.org/10.1016/j.envpol.2010.09.019
  27. Zhou, H., Zeng, M., Zhou, X., Liao, B. H., Peng, P. Q., Hu, M., Zhu, W., Wu, Y. J., & Zou, Z. J. 2014. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant and Soil, 386(1–2), 317–329. https://doi.org/10.1007/s11104-014-2268-5

Last update:

No citation recorded.

Last update: 2024-12-26 21:39:52

No citation recorded.