skip to main content

Interaction of Organisms in Abandoned Tin Mining Pits: Perspective of Life in Acid Mine Drainage Environment

Universitas Bangka Belitung, Indonesia

Received: 11 Apr 2022; Revised: 5 Jan 2023; Accepted: 7 Jan 2023; Available online: 25 Jan 2023; Published: 25 Jan 2023.
Editor(s): Budi Warsito

Citation Format:

Acid Mine Drainage (AMD) occured after mining activity exposes metal sulphides to oxidizing conditions that impact acidic condition with low pH value in the waters and heavy metals contamination. These conditions are also occurred in abandoned tin mining pits, one of placed in Bangka Belitung Archipelago Province. This mini review aimed to elaborate information of micro- and macro-organism’ life in acid mine drainage to be associated with the possibility of life in abandoned tin mining pits. Acidophilic and acidotolerant organisms such as bacterial, phyto- and zooplankton, and some macroorganism included invertebrate or vertebrate like fishes and also water plants were found in these waters. Their presence developed a symbiosis interaction in aquatic environment. Phytoplankton is an autotroph organism, despite being considered autotroph organism, many phytoplankton require exogenous organic cofactors and nutrients for their life. These cofactors were often served by heterotroph bacterial to sustain the growth of phytoplankton. Instead, bacterial obtained dissolved organic matter derived from phytoplankton to survive in the aquatic environment. Furthermore, phytoplankton was consumed by zooplankton; zooplankton was consumed by small fish to big fish in the waters. In addition, water plants also support the interaction of organisms in the water by supplying dissolved oxygen, also anorganic and organic material for their life. The symbiosis and quorum sensing plays an important role in structuring the aquatic food web and creating a life in the acidic water-polluted heavy metal.

Fulltext View|Download
Keywords: acidic water, heavy metal, tin mining pit, symbiosis, quorum sensing

Article Metrics:

  1. Abhilash, P., Jamil, S., Singh, N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances 27(4): 474-488
  2. Ahmad, A.K., Shuhaimi-Othman, M. 2010. Heavy metal concentrations in sediments and fishes from Lake Chini, Pahang, Malaysia. Journal of Biological Sciences 10(2), 93-100
  3. Ahmad F. 2013. Distribusi dan prediksi tingkat pencemaran logam berat (Pb, Cd, Cu, Zn, dan Ni) dalam sedimen di perairan Pulau Bangka menggunakan indeks beban pencemaran dan indeks geoakumulasi. Jurnal Ilmu dan Teknologi Kelautan Tropis 5(1): 170-181
  4. Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., ..., Kalderis, D. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12(5): 1927
  5. Arif, S., Nacke, H., Schliekmann, E., Reimer, A., Arp, G., Hoppert, M. 2021. Composition and niche-specific characteristics of microbial consortia colonizing marsberg copper mine in the Rhenish Massif. Biogeosciences Discussions 2021: 1-31
  6. Ashraf, M.A., Maah, M.J., Yusoff, I. 2010. Study of water quality and heavy metals in soil & water of ex-mining area Bestari Jaya, Peninsular Malaysia. International Journal of Basic & Applied Sciences IJBAS-IJENS 10(3): 7-12
  7. Ashraf, M.A., Maah, M.J, Yusoff, I. 2011a. Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology 82: 401-416
  8. Ashraf, M.A., Maah, M.J., Yusoff, I. 2011b. Analysis of physio-chemical parameters and distribution of heavy metals in soil and water of ex-mining area of Bestari Jaya, Peninsular Malaysia. Asian Journal of Chemistry 238: 3493-3499
  9. Ashraf, M.A., Maah, M.J., Yusoff, I. 2012a. Speciation of heavy metals in the sediments of former tin mining catchment. Iranian Journal of Science and Technology 36(A2): 163-180
  10. Ashraf, M.A., Maah, M.J., Yusoff, I. 2012b. Morphology, geology and water quality assessment of former tin mining catchment. The Scientific World Journal 2012: 1-15
  11. Ashraf, M.A., Maah, M.J., Yusoff, I. 2013. Evaluation of natural phytoremediation process occurring at ex-tin mining catchment. Chiang Mai Journal of Science 40(2): 198-213
  12. Babu, D.J., Sumalatha, B., Venkateswarulu, T.C., Das, K.M., Kodali, V.P. 2014. Kinetic, equilibrium and thermodynamic studies of biosorption of Chromium (VI) from aqueous solutions using Azolla Filiculoidus. Journal of Pure and Applied Microbiology 8(4): 3107–3116
  13. Baharom, Z.S., Ishak, M.Y. 2015. Determination of heavy metal accumulation in fish species in Galas River, Kelantan and Beranang mining pool, Selangor. Procedia Environmental Sciences 2015(30): 320-325
  14. Bao, Z., Bain, J., Saurette, E., Finfrock, Y.Z., Hu, Y., Ptacek, C.J., Blowes, D.W. 2022. Mineralogy-dependent sulfide oxidation via polysulfide and thiosulfate pathways during weathering of mixed-sulfide bearing mine waste rock. Geochimica et Cosmochimica Acta 2022(317): 523-537
  15. Benavides, L.C.L., Pinilla, L.A.C., Serrezuela, R.R., Serrezuela, W.F.R. 2018. Extraction in laboratory of heavy metals through rhizofiltration using the plant Zea mays (maize). International Journal of Applied Environmental Sciences 13(1): 9-26
  16. Bruneel, O., Pascault, N., Egal, M., Bancon-Montigny, C., Goñi-Urriza, M.S., Elbaz-Poulichet, F., ..., Duran, R. 2008. Archaeal diversity in a Fe–As rich acid mine drainage at Carnoulès (France). Extremophiles 12(4): 563-571
  17. Byrne, P., Wood, P.J., Reid, I. 2012. The impairment of river systems by metal mine contamination: a review including remediation options. Critical Reviews in Environmental Science and Technology 42(19): 2017-2077
  18. Celebi E.E., Oncel M.S. 2016. Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey). Journal of African Earth Sciences 2016(124): 487-496
  19. Chandra, R., Kumar, V., Tripathi, S., Sharma, P. 2018. Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecological Engineering 2018(111): 143-156
  20. Chaturvedi, A.D., Pal, D., Penta, S., Kumar, A. 2015. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World Journal of Microbiology and Biotechnology 31(10): 1595-1603
  21. Damodaran, D., Suresh, G., Mohan, R.B. 2011. Bioremediation of soil by removing heavy metals using Saccharomyces cerevisiae. 2ndInternational Conference on Environmental Science and Technology. Singapore
  22. Daniel, V.N., Chudusu, E.S., Chup, J.A., Pius, N.D. 2014. Variations of heavy metals in agricultural soils irrigated with tin water in Heipang District of Barkin Ladi, Plateau State, Nigeria. International Journal of Science and Technology 3(5): 255-263
  23. Duarte, R.M., Ferreira, M.S., Wood, C.M., Val, A.L. 2013. Effect of low pH exposure on Na+ regulation in two cichlid fish species of the Amazon. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 166(3): 441-448
  24. Dixit, R., Wasiullah., Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., …, Paul, D. 2015. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 7: 2189-2212
  25. Dold, B. 2014. Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals 4(3): 621-641
  26. Dominguez-Castanedo, O., Mosqueda-Cabrera, M.A., Valdesalici, S. 2013. First observations of annualism in Millerichthys robustus (Cyprinodontiformes: Rivulidae). Ichthyological Exploration of Freshwaters 24(1): 15-20
  27. Dopson, M., Johnson, D.B. 2012. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environmental Microbiology 14(10): 2620-2631
  28. Dusengemungu, L., Kasali, G., Gwanama, C., Mubemba, B. 2021. Overview of fungal bioleaching of metals. Environmental Advances 2021(5): 100083
  29. El Sayed, M.T., El-Sayed, A.S. 2020. Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 6(5): e03866
  30. Emmyrafedziawati, A.K.R., Mohd Aziz, R. 2016. Photosynthetic bacteria identification and characterization by pufM gene. Technical Report for Crop and Soil Sciences Research Centre, MARDI
  31. Erakhrumen, A.A. 2017. Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Review 2(7): 151-156
  32. Fan, Y., Lu, Z., Chen, J., Zhou, Z., Wu, G. 2002. Major ecological and environmental problems and the ecological reconstruction technologies of the coal mining areas in China. Acta Ecologica Sinica 23(10): 2144-2152
  33. Franssen, C.M. 2009. The effects of heavy metal mine drainage on population size structure, reproduction, and condition of western mosquitofish, Gambusia affinis. Archives of Environmental Contamination and Toxicology 57(1): 145-156
  34. Gaikwad, R.W., Gupta, D.V. 2007. Acid mine drainage (AMD) management. Journal of Industrial Pollution Control 23(2): 283-295
  35. Ghosh, M.; Singh, S. 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Applied Ecology and Environmental Research 2005(3): 1-18
  36. Giri, K., Mishra, G., Pandey, S., Verma, P.K., Kumar, R., Bisht, N.S. 2014. Ecological degradation in Northeastern coal fields: Margherita Assam. International Journal of Science, Environment and Technology 3(3): 881-884
  37. Gomes, P., Valente, T., Albuquerque, T., Henriques, R., Flor-Arnau, N., Pamplona, J., Macías, F. 2021. Algae in acid mine drainage and relationships with pollutants in a degraded mining ecosystem. Minerals 11(110): 1-16
  38. Gonzalez-Toril, E., Gomez, F., Malki, M., Amils, R. 2006. The Isolation and study of acidophilic microorganisms. In Methods in Microbiology Vol. 35: 471-510. Academic Press
  39. Goulding, K.W.T. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management 32(3): 390-399
  40. Guan, Y., Shao, C., Ju, M. 2014. Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health 11(7): 7286-7303
  41. Guignard, M.S., Leitch, A.R., Acquisti, C., Eizaguirre, C., Elser, J.J., Hessen, D.O., ..., Leitch, I.J. 2017. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution 5(70): 1-9
  42. Gupta, G.N., Srivastava, S., Khare, S.K., Prakash, V. 2014. Extremophiles: an overview of microorganism from extreme environment. International Journal of Agriculture, Environment and Biotechnology 7(2): 371-380
  43. Hao, C., Wang, L., Gao, Y., Zhang, L., Dong, H. 2010. Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles 14(5): 465-474
  44. Harahap, F.R. 2016. Restorasi lahan pasca tambang timah di Pulau Bangka. Society 4(1): 61-69
  45. Harms, H., Schlosser, D., Wick, L.Y. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9(3): 177-192
  46. Hashim, P., Nayan, N., Saleh, Y., Mahat, H., Said, Z.M., Shiang, W.F. 2018. Water quality assessment of former tin mining lakes for recreational purposes in Ipoh city, Perak, Malaysia. The Indonesian Journal of Geography 50(1): 25-33
  47. Hatar, H., Rahim, S.A., Razi, W.M., Sahrani, F.K. 2013. Heavy metals content in acid mine drainage at abandoned and active mining area. In AIP Conference Proceedings Vol. 1571, No. 1: 641-646. AIP
  48. Heidel C., Tichomirowa M. 2011. Galena oxidation investigations on oxygen and sulphur isotopes. Isotopes in Environmental and Health Studies 47(2): 169- 188
  49. Henny, C. 2011. Bioakumulasi beberapa logam pada ikan di kolong bekas tambang timah di Pulau Bangka. Limnotek 18(1): 83-95
  50. Herliyanto, H., Budianta, D., Hermansyah, H. 2014. Toksisitas logam besi (Fe) pada Ikan air Tawar. Jurnal Penelitian Sains 17(1): 26-28
  51. Herniwanti, Priatmadi, J.B., Yanuwiadi, B., Soemarno. 2013. Water plants characteristic for phytoremediation of acid mine drainage passive treatment. International Journal of Basic and Applied Sciences 13(6): 14-20
  52. Herzog, C., Hartmann, M., Frey, B., Stierli, B., Rumpel, C., Buchmann, N., Brunner, I. 2019. Microbial succession on decomposing root litter in a drought-prone Scots pine forest. The ISME Journal 13(9): 2346-2362
  53. Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., ...., Hirose, S. 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 284(5): R1199-R1212
  54. Horikoshi, K. 2016. Alkaliphiles. In Extremophiles: 53-78. Springer
  55. Hui, D. 2012. Food web: concept and applications. Nature Education Knowledge 3(12): 6
  56. Hwang, P.P., Lee, T.H., Lin, L.Y. 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology 301(1): R28-R47
  57. Jalal, K.C.A., John, B.A., Habab, M., Mohd, A.Y., Kamaruzzaman, B.Y. 2013. Bioaccumulation of selected metals in fresh water Haruan fish (Channa striatus) collected from Pahang River Basin, Malaysia. Oriental Journal of Chemistry 29(4): 1553-1558
  58. Javanbakht, V., Alavi, S.A., Zilouei, H. 2014. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology 69(9): 1775-1787
  59. Johnson, D.B., Hallberg, K.B. 2008. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Advances in Microbial Physiology 54: 201-255
  60. Jump, A.S., Marchant, R., Peñuelas, J. 2009. Environmental change and the option value of genetic diversity. Trends in Plant Science 14(1): 51-58
  61. Kalu, C.M., Ogola, H.J.O., Selvarajan, R., Tekere, M., Ntushelo, K. 2021. Fungal and metabolome diversity of the rhizosphere and endosphere of Phragmites australis in an AMD-polluted environment. Heliyon 7(3): e06399
  62. Kaur, G., Couperthwaite, S.J., Hatton-Jones, B.W., Millar, G.J. 2018. Alternative neutralisation materials for acid mine drainage treatment. Journal of Water Process Engineering 2018(22): 46-58
  63. Korzhenkov, A.A., Toshchakov, S.V., Bargiela, R., Gibbard, H., Ferrer, M., Teplyuk, A.V., ..., Golyshina, O.V. 2019. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome 7(1): 1-14
  64. Kurniawan, A. 2020. The metal oxides of abandoned tin mining pit waters as an indicator for bacterial diversity. Aquaculture, Aquarium, Conservation & Legislation Bioflux 13(5): 2982-2992
  65. Kurniawan, A., Asriani, E. 2020. Review: Quorum sensing bakteri dan peranannya pada perubahan nilai pH di kolong pascatambang timah dengan umur berbeda. Jurnal Ilmu Lingkungan 18(3): 602-609
  66. Kurniawan, A., Mustikasari, D. 2019. Review: Mekanisme akumulasi logam berat di ekosistem pascatambang timah. Jurnal Ilmu Lingkungan 17(3): 408-415
  67. Kurniawan, A., Mustikasari, D. 2021. Review tentang kemampuan ikan ekstremofil untuk hidup di perairan asam dan terkontaminasi logam berat pascapenambangan timah. Jurnal Ilmu Lingkungan 19(3): 541-554
  68. Kurniawan, A., Prasetiyono, E., Syaputra, D. 2020. Analisis korelasi parameter kualitas perairan kolong pascatambang timah dengan umur berbeda. Samakia: Jurnal Ilmu Perikanan 11(2): 91-100
  69. Kurniawan, A. 2016. Microorganism communities response of ecological changes in post tin mining ponds. Research & Reviews: A Journal of Microbiology and Virology 6(1): 17-26
  70. Kurniawan, A., Oedjijono., Tamad., Sulaeman, U. 2019. The pattern of heavy metals distribution in time chronosequence of ex-tin mining ponds in Bangka Regency, Indonesia. Indonesian Journal of Chemistry 19(1): 254-261
  71. Kushkevych, I., Procházka, J., Gajdács, M., Rittmann, S.K.M., Vítězová, M. 2021. Molecular physiology of anaerobic phototrophic purple and green sulfur bacteria. International Journal of Molecular Sciences 22(12): 6398
  72. Lad, R., Samant, J. 2015. Impact of bauxite mining on soil: a case study of bauxite mines at Udgiri, Dist-Kolhapur, Maharashtra State, India. International Research Journal of Environment Sciences 4(2): 77-83
  73. Leguizamo, M.A.O., Gómez, W.D.F., Sarmiento, M.C.G. 2017. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands-A review. Chemosphere 2017(168): 1230-1247
  74. Lessmann, D., Fyson, A., Nixdorf, B. 2000. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3. Hydrobiologia 433(1): 123-128
  75. Li, Q., Wu, P., Zha, X., Li, X., Wu, L., Gu, S. 2018. Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of Midwestern Guizhou, China: evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate. Environmental Science and Pollution Research 25(18): 18038-18048
  76. Lindeque, J.Z., Levanets, O., Louw, R., Van Der Westhuizen, F.H. 2010. The involvement of metallothioneins in mitochondrial function and disease. Current Protein and Peptide Science 11(4): 292-309
  77. Liu, Y., Wu, H., Kou, L., Liu, X., Zhang, J., Guo, Y., Ma, E. 2014. Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress. PloS ONE 9(11): e112759
  78. Long, A., Zhang, J., Yang, L.T., Ye, X., Lai, N.W., Tan, L.L., ..., Chen, L.S. 2017. Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Frontiers in Plant Science 8: 185
  79. Maltman, C., Yurkov, V. 2019. Extreme environments and high-level bacterial tellurite resistance. Microorganisms 7(12): 601
  80. Mansouri, B., Baramaki, R. 2011. Influence of water hardness and pH on acute toxicity of Hg on fresh water fish Capoeta fusca. World Journal of Fish and Marine Sciences 3(2): 132-136
  81. Mejia, E.R., Ospina, J.D., Marquez, M.A., Morales, A.L. 2009. Oxidation of chalcopyrite (CuFeS2) by Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans like bacterium in shake flasks. In Advanced Materials Research 2009(71-73): 385-388. Trans Tech Publications. Switzerland
  82. Mendez, M.O., Neilson, J.W., Maier, R.M. 2008. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Applied and Environmental Microbiology 74(12): 3899-3907
  83. Merino, N., Aronson, H.S., Bojanova, D.P., Feyhl-Buska, J., Wong, M.L., Zhang, S., Giovannelli, D. 2019. Living at the extremes: extremophiles and the limits of life in a planetary context. Frontiers in Microbiology 10: 780
  84. Mustikasari, D., Agustiani, R.D. 2021. DNA barcoding ikan kepala timah dan betok berdasarkan gen coi sebagai ikan pioneer di kolong pascatambang timah, Pulau Bangka. Samakia: Jurnal Ilmu Perikanan 12(1): 86-95
  85. Mustikasari, D., Nuryanto, A., Suryaningsih, S. 2020. The presence of blue panchax (Aplocheilus panchax) in the waters, contaminated by heavy metals, of the abandoned tin mining pits of different age. Aquaculture, Aquarium, Conservation & Legislation 13(5): 2538-2550
  86. Ndubuisi, U.C., Chimezie, A.J., Chinedu, U.C., Chikwem, I.C., Alexander, U. 2015. Effect of pH on the growth performance and survival rate of Clarias gariepinus fry. International Journal of Research in Biosciences 4(3): 14-20
  87. Oktavia, D., Setiadi, Y., Hilwan, I. 2014. Sifat fisika dan kimia tanah di hutan kerangas dan lahan pasca tambang timah Kabupaten Belitung Timur. Jurnal Silvikultur Tropika 5(3): 149-154
  88. Oren A. 2010. Acidophiles. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester
  89. Oyetibo, G.O., Enahoro, J.A., Ikwubuzo, C.A., Ukwuoma, C.S. 2021. Microbiome of highly polluted coal mine drainage from Onyeama, Nigeria, and its potential for sequestrating toxic heavy metals. Scientific Reports 11(1): 1-15
  90. Plaza-Cazón, J., Benítez, L., Murray, J., Kirschbaum, P., Donati, E. 2021. Influence of extremophiles on the generation of acid mine drainage at the abandoned pan de azúcar mine (Argentina). Microorganisms 9(2): 281
  91. Pociecha, A., Bielańska-Grajner, I., Szarek-Gwiazda, E., Wilk-Woźniak, E., Kuciel, H., Walusiak, E. 2018. Rotifer diversity in the acidic pyrite mine pit lakes in the Sudety Mountains (Poland). Mine Water and the Environment 37(3): 518-527
  92. Pozo-Antonio, S., Puente-Luna, I., Lagüela-López, S., Veiga-Ríos, M. 2014. Techniques to correct and prevent acid mine drainage: A review. Dyna 81(186): 73-80
  93. Prieto-Barajas, C.M., Valencia-Cantero, E., Santoyo, G. 2018. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application. Electronic Journal of Biotechnology 2018(31): 48-56
  94. Rajeshkumar, S., Li, X. 2018. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports 2008(5): 288-295
  95. Rampelotto, P.H. 2013. Extremophiles and extreme environments. Life 3(3): 482-485
  96. Rao, D.V., Shivannavar, C.T., Gaddad, S.M. 2002. Bioleaching of copper from chalco pyrite ore by fungi. Indian Journal of Experimental Biology 2002(40): 319-324
  97. Rathgeber, C., Beatty, J.T., Yurkov, V. 2004. Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynthesis Research 81(2): 113-128
  98. Rosidah, Henny C. 2012. Kajian logam Fe, Al, Cu dan Zn pada perairan kolong paska penambangan timah di Pulau Bangka. Prosiding Seminar Nasional Limnologi VI: 611-619
  99. Singh, P.K., Afzal, I., Ravi, S., Dhanesh, S., Shivi, S. 2013. A study about ecological imbalance in Surguja (India) coalfield area due to mining. International Research Journal of Environment Sciences 2(4): 10-14
  100. Sinha, A., Sinha, R., Khare, S.K. 2014. Heavy metal bioremediation and nanoparticle synthesis by metallophiles. In Geomicrobiology and Biogeochemistry (pp. 101-118). Springer, Berlin, Heidelberg
  101. Siswati, N.D., Indrawati, T., Rahmah, M. 2009. Biosorpsi logam berat plumbum (Pb) menggunakan biomassa Phanerochaete chrisosporium. Jurnal Ilmiah Teknik Lingkungan 1(2): 67-72
  102. Skousen, J,G., Sexstone, A., Ziemkiewicz, P,F. 2000. Acid mine drainage control and treatment. Reclamation of Drastically Disturbed Lands 2000(41): 131-168
  103. Sow, S.L.S., Khoo, G., Chong, L.K., Smith, T.J., Harrison, P.L., Ong, H.K.A. 2014a. Molecular diversity of the methanotrophic bacteria communities associated with disused tin-mining ponds in Kampar, Perak, Malaysia. World Journal of Microbiology and Biotechnology 30(10): 2645-2653
  104. Sow, S.L.S., Khoo, G., Chong, L.K., Smith, T.J., Harrison, P.L., Ong, H.K.A. 2014b. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia. World Journal of Microbiology and Biotechnology 30(2): 757-766
  105. Srichandan, H., Mohapatra, R.K., Parhi, P.K., Mishra, S. 2019. Bioleaching approach for extraction of metal values from secondary solid wastes: a critical review. Hydrometallurgy 2019(189): 105122
  106. Srineetha, U., Reddy, M.V., Bhaskar, M. 2014. Effect of environmental acidic ph on oxygen consumption in different stages of fish, Cyprinus carpio (L). IOSR Journal of. Environmental Science, Toxicology and Food Technology 8(8): 17-21
  107. Stallinga P. 2018. Carbon dioxide and ocean acidification. European Scientific Journal 14(18): 1857-7881
  108. Sukono, G.A.B., Hikmawan, F.R., Evitasari, E., Satriawan, D. 2020. Mekanisme Fitoremediasi. Jurnal Pengendalian Pencemaran Lingkungan 2(2): 40-47
  109. Syandri, H., Azrita., Junaidi., Elfiondri. 2015. Heavy Metals in Maninjau Lake, Indonesia: water column, sediment and biota. International Journal of Fisheries and Aquatic Studies 3(2): 273-278
  110. Vijayakumar, S., Sakthivel, M., Murugesan, S., Narmada, K. 2019. Potential of Hydrogen (pH) to monitor the multi temporal: A case study of Nagapattinam District. Journal of Applied Science and Computation 6(1): 1173-1152
  111. Vyas A, Pancholi A. 2009. Environmental degradation due to mining in South Rajasthan: a case study of Nimbahera, Chittorgarh (India). Journal of Environmental Research and Development 4(2): 405-412
  112. Wang, Z., Xu, Y., Zhang, Z., Zhang, Y. 2021. Acid mine drainage (AMD) in abandoned coal mines of Shanxi, China. Water 13(8): 1-21
  113. Widad, F., Abdullah, M. 2013. Preliminary study of heavy metals pollution in freshwater fishes of Sungai Simpang Empat, Penang. Journal of Academia 3(1): 48-65
  114. Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., Chen, Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11: 359
  115. Zeng, Y., Feng, F., Medová, H., Dean, J., Koblížek, M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proceedings of the National Academy of Sciences, 111(21): 7795-7800
  116. Zhang, G., Dong, H., Jiang, H., Kukkadapu, R.K., Kim, J., Eberl, D., Xu, Z. 2009. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. American Mineralogist 94(7): 1049-1058
  117. Zhang, X., Tang, S., Wang, M., Sun, W., Xie, Y., Peng, H., ..., Hecker, M. 2019. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere 2019(217): 790-799
  118. Zhu, D., Adebisi, W.A., Ahmad, F., Sethupathy, S., Danso, B., Sun, J. 2020. Recent development of extremophilic bacteria and their application in biorefinery. Frontiers in Bioengineering and Biotechnology 8: 483

Last update:

No citation recorded.

Last update: 2024-05-20 19:24:09

No citation recorded.