skip to main content

Pemanfaatan Foto Udara UAV Untuk Pemetaan Kerentanan Fisik Rumah Terhadap Longsor di Sub-DAS Bompon

1Universitas Negeri Semarang, Indonesia

2Universitas Gajdah Mada, Indonesia

3Universitas Gadjah Mada, Indonesia

Received: 29 Aug 2022; Revised: 27 May 2023; Accepted: 15 Jul 2023; Available online: 17 Sep 2023; Published: 21 Sep 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract

Kajian untuk menilai kerusakan maupun kerentanan rumah terhadap longsor skala detail masih jarang dilakukan. Apalagi mengenai pedoman analisisnya melalui proksi berbasis data penginderaan jauh yang masih sangat jarang dilakukan. Tujuan dari penelitian ini adalah memetakan kerentanan fisik rumah terhadap longsor menggunakan foto udara UAV (Unmanned Aerial Vehicle) serta memaparkan proses pengumpulan datanya. Hasil dari penelitian ini adalah foto udara UAV dapat digunakan untuk mengidentifikasi kerentanan fisik rumah terhadap longsor melalui interpretasi visual. Tahapan identifikasi dimulai dari observasi, lalu dilanjutkan dengan menginterpretasi proksi berupa bentuk atap dan bangunan, ukuran, material atap, lokasi dan asosiasi. Pendekatan tersebut digunakan sebagai pembantu proses interpretasi rumah dan indikator kerentanan fisik dan kunci interpretasi yang disusun secara umum memiliki akurasi diatas 80%. Hasil penilaian kerentanan fisik menunjukkan bahwa rumah di Sub DAS Bompon didominasi oleh rentan tertimbun longsor.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Hasil similarity TURNITIN
Subject
Type Other
  Download (4MB)    Indexing metadata
Keywords: foto udara UAV; interpretasi visual; kerentanan fisik; longsor; pemetaan skala rumah tangga; proksi

Article Metrics:

  1. Basa, N., Shafique, M., Bacha, A. S., Shah, S. U., Basharat, M., Ali, M. Z., ... & Khan, S. (2016). Landslides induced vulnerability and risk assessment in Muzaffarabad and Balakot, Pakistan. Journal of Himalayan Earth Science, 49(2)
  2. Bera, S., Guru, B., & Oommen, T. (2020). Indicator-based approach for assigning physical vulnerability of the houses to landslide hazard in the Himalayan region of India. International Journal of Disaster Risk Reduction, 50, 101891
  3. Bowles, J.E., 1993. Sifat-sifat fisis dan geoteknis tanah. Jakarta: Erlangga
  4. Chen, L. X., Yin, K. L., & Dai, Y. X. (2011). Building vulnerability evaluation in landslide deformation phase. Journal of mountain science, 8(2), 286-295
  5. Cotrufo, S., Sandu, C., Giulio Tonolo, F., & Boccardo, P. (2018). Building damage assessment scale tailored to remote sensing vertical imagery. European Journal of Remote Sensing, 51(1), 991-1005
  6. Douglas, J. (2007). Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Sciences, 7(2), 283-288
  7. Diaz-Sarachaga, J. M., & Jato-Espino, D. (2020). Analysis of vulnerability assessment frameworks and methodologies in urban areas. Natural Hazards, 100(1), 437-457
  8. Du, J., Yin, K., Lacasse, S., & Nadim, F. (2014). Quantitative vulnerability estimation of structures for individual landslide: application to the Metropolitan Area of San Salvador, El Salvador. Electron J Geotech Eng, 19, 1251-1264
  9. Fallah-Aliabadi, S., Sarsangi, A., & Modiri, E. (2015). The social and physical vulnerability assessment of old texture against earthquake (case study: Fahadan district in Yazd City). Arabian Journal of Geosciences, 8(12), 10775-10787
  10. Fariz, T. R., Jatmiko, R. H., Mei, E. T. W., & Lutfiananda, F. (2023). Interpretation on aerial photography for house identification on landslide area at Bompon sub-watershed. In AIP Conference Proceedings (Vol. 2683, No. 1). AIP Publishing
  11. Fauzi, Y., Suwarsono,. Mayasari.&Zulfia, M., 2014.The run up tsunami modeling in Bengkulu using the spatial interpolation of kriging technique. Forum Geografi, 28 (2)
  12. Fernandez Galarreta, J., Kerle, N., & Gerke, M. (2015). UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Natural hazards and earth system sciences, 15(6), 1087-1101
  13. Frick, H. (1997). Pola struktural dan teknik bangunan di Indonesia: Suatu pendekatan arsitektur Indonesia melalui pattern language secara konstruktif dengan contoh arsitektur Jawa Tengah (Vol. 1). Kanisius
  14. Ghaffarian, S., & Emtehani, S. (2021). Monitoring urban deprived areas with remote sensing and machine learning in case of disaster recovery. Climate, 9(4), 58
  15. Ghaffarian, S., Kerle, N., & Filatova, T. (2018). Remote sensing-based proxies for urban disaster risk management and resilience: A review. Remote sensing, 10(11), 1760
  16. Godfrey, A., Ciurean, R. L., Van Westen, C. J., Kingma, N. C., & Glade, T. (2015). Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach–An application in Nehoiu Valley, Romania. International journal of disaster risk reduction, 13, 229-241
  17. Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R., ... & Cummins, P. (2015). An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Frontiers in Earth Science, 3, 32
  18. Guillard-Gonçalves, C., Zêzere, J. L., Pereira, S., & Garcia, R. A. C. (2015). Assessment of physical vulnerability of buildings and analysis of landslide risk at the municipal scale-application to the Loures municipality, Portugal. Natural Hazards & Earth System Sciences Discussions, 3(9)
  19. Hagenlocher, M., Hölbling, D., Kienberger, S., Vanhuysse, S., & Zeil, P. (2016). Spatial assessment of social vulnerability in the context of landmines and explosive remnants of war in Battambang province, Cambodia. International Journal of Disaster Risk Reduction, 15, 148-161
  20. Hashemian, M. S., Abkar, A. A., & Fatemi, S. B. (2004). Study of sampling methods for accuracy assessment of classified remotely sensed data. In International congress for photogrammetry and remote sensing (pp. 1682-1750)
  21. Hussain, A., Singh, G. &Rawat, G.S., 2018.Landscape vuneralbility assessment using remote sensing and GIS tools in the Indian part of Kailash Sacred Landscape, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, XLII (5), p. 409-419
  22. Huynh, L. T. M., & Stringer, L. C. (2018). Multi-scale assessment of social vulnerability to climate change: An empirical study in coastal Vietnam. Climate Risk Management, 20, 165-180
  23. Indarto, H & Andiyarto, H.T.C. 2015. Model struktur bangunan rumah sederhana di daerah rawan longsor Gunungpati Semarang. Jurnal Teknik Sipil dan Perencanaan, 17 (1), p. 1- 6
  24. Kappes, M. S., Papathoma-Koehle, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577-590
  25. Kaur, H., Gupta, S., Parkash, S., & Thapa, R. (2018). Application of geospatial technologies for multi-hazard mapping and characterization of associated risk at local scale. Annals of GIS, 24(1), 33-46
  26. Malik, R. F., & Sartohadi, J. (2017). Pemetaan geomorfologi detail menggunakan teknik step-wise-grid di daerah aliran sungai (DAS) Bompon Kabupaten Magelang, Jawa Tengah. Jurnal Bumi Indonesia, 6(2)
  27. Masruroh, H., Sartohadi, J., & Setiawan, A. (2016). Membangun metode identifikasi longsor berbasis foto udara format kecil di DAS Bompon, Magelang, Jawa Tengah. Majalah Geografi Indonesia, 30(2), 169-181
  28. Mirdda, H. A., Bera, S., & Chatterjee, R. (2022). Vulnerability assessment of mountainous households to landslides: A multidimensional study in the rural Himalayas. International Journal of Disaster Risk Reduction, 71, 102809
  29. Nataraj, S. (2005). Analytic hierarchy process as a decision-support system in the petroleum pipeline industry. Issues in Information Systems, 6(2), 16-21
  30. Noveberian, M. G., & Sartohadi, J. (2017). Pemetaan Rumah Rentan Longsor dan Rentan Tertimbun Longsor di Daerah Aliran Sungai Bompon, Kabupaten Magelang. Jurnal Bumi Indonesia, 6(2), 228684
  31. Olson, C. E. (1960). Elements of photographic interpretation common to several sensors. Photogrammetric Engineering, 26(4), 651-656
  32. Papaioannou, G., Vasiliades, L. &Loukas, A., 2015.Multi-Criteria analysis framework for potential flood prone areas mapping. Water Resour Manage, 29 (2), p. 399-418
  33. Papathoma-Köhle, M., Gems, B., Sturm, M., & Fuchs, S. (2017). Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth-Science Reviews, 171, 272-288
  34. Park, Y., Pradhan, A. M. S., Kim, U., Kim, Y. T., & Kim, S. (2016). Development and application of urban landslide vulnerability assessment methodology reflecting social and economic variables. Advances in Meteorology, 2016
  35. Piccinini, F., Gorreja, A., Di Stefano, F., Pierdicca, R., Sanchez Aparicio, L. J., & Malinverni, E. S. (2022). Preservation of Villages in Central Italy: Geomatic Techniques’ Integration and GIS Strategies for the Post-Earthquake Assessment. ISPRS International Journal of Geo-Information, 11(5), 291
  36. Pitana, T. S. (2009). Reproduksi Simbolik Arsitektur Tradisional Jawa: Memahami Ruang Hidup Material Manusia Jawa. GEMA TEKNIK Majalah Ilmiah Teknik, 10(2), pp-126
  37. Prasetya, A. R. A., Rachmawati, T. A., & Usman, F. (2021). Assessment of landslide risk in the mountainous area. Case study: Bumiaji Sub-District. In IOP Conference Series: Earth and Environmental Science (Vol. 916, No. 1, p. 012009). IOP Publishing
  38. Prihatmaji, Y.P., 2007. Perilaku rumah tradisional jawa joglo terhadap gempa. Dimensi Teknik Arsitektur , 35 (1) p. 1-12
  39. Prihatmaji, Y.P., Kitamori, A.& Komatsu, K. 2015. Seismic vulnerability on structural proportion of traditional javanese wooden houses (Joglo). Procedia Environmental Sciences, 28 p. 804-808
  40. Rahardjo, N., Aunurrahim, A., & Asri, G. H. M. (2021). Unmanned Aerial Vehicle (UAV) Data as a Land Cover Data Renewal in Pandanrejo Village, Kaligesing Sub-District, Purworejo. International Journal of Sciences: Basic and Applied Research (IJSBAR), 55(1), 247-261
  41. Rahman, B., Fimanasari, R., & Sari, U. C. (2019). The Analysis of Landslide Vulnerability in Settlement of Citizenship Association VI, Sukorejo Village, Semarang. In IOP Conference Series: Earth and Environmental Science (Vol. 328, No. 1, p. 012035). IOP Publishing
  42. Ramlah, R., Hadmoko, D. S., & Setiawan, M. A. (2020). Penilaian Tingkat Aktivitas Longsor di Sub-DAS Bompon. Media Komunikasi Geografi, 21(1), 12-26.
  43. Roslee, R., Jamaludin, T. A., & Simon, N. (2017). Landslide Vulnerability Assessment (LVAs): A Case Study from Kota Kinabalu, Sabah, Malaysia. Indonesian Journal on Geoscience, 4(1), 49-59
  44. Saputra, R. 2020. Tanah Longsor Mengancam Sejumlah Rumah Warga. Diakses dari http://beritamagelang.id/tanah-longsor-mengancam-sejumlah-rumah-warga
  45. Sambodo, A. P., & Arpornthip, T. (2021). Increasing the Efficiency of Detailed Soil Resource Mapping on Transitional Volcanic Landforms Using a Geomorphometric Approach. Applied and Environmental Soil Science, 2021
  46. Setyawan, B., Sartohadi, J., & Hadmoko, D. S. (2016). Analysis of Building Position and Orientation to Assess the Building Vulnerability to Landslide Through the Interpretation of 2D Small Format Aerial Photo (Case Study in Bompon Catchment, Magelang Regency). lst International Cohference on Geography and Education (ICGE 2016). Atlantis Press
  47. Singh, A., Kanungo, D. P., & Pal, S. (2019). Physical vulnerability assessment of buildings exposed to landslides in India. Natural Hazards, 96(2), 753-790
  48. Subasinghe, C. N., & Kawasaki, A. (2021). Assessment of physical vulnerability of buildings and socio-economic vulnerability of residents to rainfall induced cut slope failures: a case study in central highlands, Sri Lanka. International Journal of Disaster Risk Reduction, 65, 102550
  49. Sun, B., Xu, Q., He, J., Liu, Z., Wang, Y., & Ge, F. (2016). Damage assessment framework for landslide disaster based on very high-resolution images. Journal of Applied Remote Sensing, 10(2), 025027
  50. Sutriyanto, E. (2020). Tebing setinggi 15 meter dan Pnjang 8 Meter Longsor di Magelang, Ancam 8 Rumah Diakses dari https://www.tribunnews.com/regional/2020/01/27/tebing-setinggi-15-meter-dan-pnjang-8-meter-longsor-di-magelang-ancam-8-rumah
  51. Udie, J., Bhattacharyya, S., & Ozawa-Meida, L. (2018). A conceptual framework for vulnerability assessment of climate change impact on critical oil and gas infrastructure in the niger delta. Climate, 6(1), 11
  52. Wida, W. A., Maas, A., & Sartohadi, J. (2019). Pedogenesis of Mt. Sumbing volcanic ash above the alteration clay layer in the formation of landslide susceptible soils in Bompon sub-watershed. Ilmu Pertanian (Agricultural Science), 4(1), 15-22

Last update:

No citation recorded.

Last update: 2024-05-10 15:12:31

No citation recorded.