skip to main content

Potensi Pemanfaatan Limbah Tambak Udang Vaname (Litopenaeus vannamei) untuk Budidaya Kerang Darah (Anadara granosa, Linneus 1758)

1Departement of Aquaculture, Universitas Bangka Belitung, Indonesia

2Departemen Budidaya Perairan, Institut Pertanian Bogor, Indonesia

Received: 29 Sep 2022; Revised: 10 Feb 2023; Accepted: 2 Mar 2023; Available online: 27 Mar 2023; Published: 5 Apr 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Budidaya udang vaname di tambak dilakukan semakin intensif untuk memenuhi tingginya permintaan. Intensifitas kegiatan budidaya menyebabkan peningkatan beban limbah yang dihasilkan. Limbah tambak udang berupa dalam bentuk padatan lumpur organik dan senyawa-senyawa nutrien terutama nitrogen dan fosfor dalam jumlah yang tinggi. Tingginya kandungan limbah ini menyebabkan permasalahan bagi lingkungan perairan diantaranya yaitu pertumbuhan pesat mikroalga. Limbah yang dihasilkan dari kegiatan budidaya udang di tambak perlu diatasi diantaranya dengan memanfaatkan limbah tersebut untuk budidaya kerang darah. Kerang darah merupakan organisme filter feeder dan detritus feeder yang hidup pada substrat lumpur dengan pakan utamanya yaitu mikroalga. Kerang darah juga menyerap detritus yang mengandung senyawa nutrien untuk pertumbuhan. Limbah tambak udang yang mengandung lumpur dan senyawa nutrien berpotensi digunakan untuk budidaya kerang darah. Budidaya kerang darah dapat dlakukan dengan cara co-culture dengan udang vaname pada tambak produksi udang, pemeliharaan kerang darah pada tambak IPAL udang atau menempatkan limbah tambak udang pada tambak budidaya kerang darah. Upaya pemanfaatan limbah tambak ini selain untuk meminimalisasi dampak limbah bagi lingkungan juga meningkatkan produktivitas kerang darah.
Fulltext View|Download
Keywords: Limbah tambak udang, lumpur, senyawa nutrien, budidaya, kerang darah, filter feeder, detritus feeder

Article Metrics:

  1. Afiati, N., (2007), Gonad Maturation of Two Intertidal Blood Clams Anadara Granosa (L.) and Anadara antiquata (L.) (Bivalvia: Arcidae) in Central Java, Journal of Coastal Development, 10(2), 105–113
  2. Alfiansah, Y.R., Hassenruck, C., Kunzmann, A., Taslihan, A., Harder, J., and Gardes, A., (2018), Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities, Front. Microbiol 9, 1-15. https://doi.org/10.3389/fmicb.2018.02457
  3. Anthony, S.P., and Philip, R., (2006), Bioremediation in Shrimp Culture Systems, World Fish Center Quarterly, 29, 62-66
  4. Arapov, J., Balic, D.E., Peharda, M., and Gladan, Z.N., (2010), Bivalve feeding—how and what they eat?, Ribarstvo, 68(3), 105-116
  5. Atmaja, B.S., Rejeki, S., and Wisnu, R., (2014), Pengaruh Padat Tebar Berbeda Terhadap Pertumbuhan dan Kelulushidupan Kerang Darah (Anadara Granosa) yang Dibudidaya di Perairan Terabrasi Desa Kaliwlingi Kabupaten Brebes, Journal of Aquaculture Management and Technology, 3 (4), 207-213
  6. Badraeni, Azis, H.Y., Tresnati, J., and Tuwo, A., (2020), Seaweed Gracilaria Changii as A Bioremediator Agent for Ammonia, Nitrite and Nitrate in Controlled Tanks of Whiteleg Shrimp Litopenaeus vannamei. Proceeding of IOP Conference Series: Earth and Environmental Science, 564(1), 1-15
  7. Bosman, O., Soesilo, T. E. B., and Rahardjo, S., (2021), Pollution Index and Economic Value of Vannamei Shrimp (Litopenaeus vannamei) Farming in Indonesia, Indonesian Aquaculture Journal, 16 (1), 51-60. http://dx.doi.org/10.15578/iaj.16.1.2021.51-60
  8. Chaikaew, P., Rugkarn, N., Pongpipatwattana, V., and Kanokkantapong, V., (2019), Enhancing Ecological-Economic Efficiency of Intensive Shrimp Farm Through In-Out Nutrient Budget and Feed Conversion Ratio, Sustainable Environment Research, 29 (1), 1-11. https://doi.org/10.1186/s42834-019-0029-0
  9. Chandra, G., Sharma, A.P., and Sahu, S.K., (2013), Impact of Pen-Culture Technology on Fish Productivity of Floodplain Wetlands in Asom, Indian Journal of Animal Sciences, 83 (2), 209–215
  10. Cilenti, L., Scirocco, T., Specchiulli, A., Florio, M., Renzi, M., and Breber P., (2010), Population structure and spatial distribution of Loripes lacteus (Linnaeus, 1758) in Varano lagoon, SE Italy, Transit Water Bull, 2(4), 63-70. https://doi.org/10.1285/i1825229Xv2n4p63
  11. Dame, R.F., (2012), Ecology Marine Bivalves an Ecosystem Approach, CRC Press, New York, pp. 63-99
  12. Dauda, A.B., Ajadi, A., Tola-Fabunmi, A.S., and Akinwole, A.O., (2019), Waste Production in Aquaculture: Sources, Components and Managements in Different Culture Systems, Aquaculture and Fisheries, 4(3), 81-88. https://doi.org/10.1016/j.aaf.2018.10.002
  13. Emerenciano, M.G.C., Rombenso, A.N., Vieira, F.D.N., Martins, M.A., Coman, G.J., Truong, H.H., Noble, T.H., and Simon, C.J., (2022), Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding, Animals, 12, 236. https://doi.org/10.3390/ani12030236
  14. Food and Agriculture Organization. (2020). The State of World Fisheries and Aquaculture 2020, FAO, Rome. doi : https://doi.org/10.4060/ca9229en
  15. Gomez, M.M.S., Fuerte, M.V., and Lizarraga, G.I., (2010), Gut Content Analysis of Anadara tuberculosa (Sowerby, 1833) Through Histological Sections, Cicimar Oceánides, 25(2), 143-148. https://doi.org/10.37543/oceanides.v25i2.90
  16. Hagopian, D.S. and Riley, J.G., (1998), A Closer Look at The Bacteriology of Nitrication, Aquacultural Engineering, 18 (4), 223-244
  17. Hastuti, Y.P., (2011), Nitrifikasi dan Denitrifikasi di Tambak, Jurnal Akuakultur Indonesia, 10 (1), 89–98. https://doi.org/10.19027/jai.10.89-98
  18. Herath, S.S., and Satoh, S., (2015), Environmental Impact of Phosphorus and Nitrogen from Aquaculture, Woodhead Publishing Series in Food Science, Technology and Nutrition, 369-386. https://doi.org/10.1016/B978-0-08-100506-4.00015-5
  19. Hossain, M.A., Sarker, A.K, Amin, M.N., Hossain, M.M., and Miah, M.S., (2016), Development and Performance Evaluation of Sludge Remover for Intensive Aquaculture, Aquacultural Engineering, 74, 62-69. https://doi.org/10.1016/j.aquaeng.2016.06.001
  20. Huang, C., Luo, Y., Zeng, G., Zhang, P., Peng, R., Jiang, X., and Jiang, M., (2022), Effect of Adding Microalgae to Whiteleg Shrimp Culture on Water Quality, Shrimp Development and Yield, Aquaculture Reports, 22, 100916. https://doi.org/10.1016/j.aqrep.2021.100916
  21. Iber, B.T., and Kasan, N.A., (2021), Recent Advances in Shrimp Aquaculture Wastewater Management, Heliyon, 7 (11), 1-9. https://doi.org/10.1016/j.heliyon.2021.e08283
  22. Jasmin, M.Y., Syukri, F., Kamarudin, M.S., and Karim, M., (2020), Potential of Bioremediation in Treating Aquaculture Sludge, Aquaculture, 519, 1-5. https://doi.org/10.1016/j.aquaculture.2019.734905
  23. Juliyanto, N.A.W., Maftuch, and Masithah, E.D., (2021), Analiysis of Phytoplankton Diversity on The Productivity of Vannamei Shrimp (Litopenaeus vannamei) Intensive Pond, Jatisari Village, Banyuwangi, J.Exp. Life Sci., 11 (2), 26-33. https://doi.org/10.21776/ub.jels.2021.011.02.01
  24. Junior, A. P. B., Flickinger, D. L., and Henry-Silva, G.G., (2021), Sedimentation Rates of Nutrients and Particulate Material in Pond Mariculture of Shrimp (Litopenaeus vannamei) Carried Out with Different Management Strategies, Aquaculture, 534, 1-8. https://doi.org/10.1016/j.aquaculture.2020.736307
  25. Karyaningsih, I., (2018), Types of Organisms Decomposers of Soil Pollutants, Journal of Forestry and Environment, 01, 16-21. https://doi.org/10.25134/jfe.v1i01
  26. Khalil, M., Yasin, Z., and Hwai, T.S., (2017), Reproductive Biology of Blood Cockle Anadara granosa (bivalvia: arcidae) in The Northern Region of The Strait of Malacca, Ocean Sci. J., 52(1), 75-89. https://doi.org/10.1007/s12601-017-0010-y
  27. Klochenko, P., Shevchenko, T., Nezbrytskaya, I.N., and Bilous, O., (2019), Phytoplankton Production and Decomposition Characteristics in Water Bodies Differing in The Degree of Their Contamination by Inorganic Compounds of Nitrogen and Phosphorus, Hydrobiological Journal, 55(3), 29-43. https://doi.org/10.1615/HydrobJ.v55.i3.40
  28. Lam, N.N., and Hai, D.N., (1998), Gut Contents of Blood Cockle, Anadara granosa (L.), with Emphasis on Diatoms, Tra Vinh, South Vietnam, Phuket Marine Biological Center, 18(1), 77-82
  29. Lananan, F., Hamid, S.H.A., Din, W.N.S., Khatoon, H., Jusoh, A., and Endut, A., (2014), Symbiotic Bioremediation of Aquaculture Wastewater in Reducing Ammonia and Phosphorus Utilizing Effective Microorganism (EM-1) and Microalgae (Chlorella sp.), Int. Biodeterior Biodegradation, 95, 127–134, https://doi.org/10.1016/j.ibiod.2014.06.013
  30. Martin, J.L.M., Veran, Y., Guelorget, O., and Pham, D, (1998), Shrimp Rearing: Stocking Density, Growth, Impact on Sediment, Waste Output and Their Relationships Studied Through The Nitrogen Budget in Rearing Ponds, Aquaculture, 164, 135–149. https://doi.org/10.1016/S0044-8486(98)00182-3
  31. Maslukah, L., Zainuri, M., Wirasatriya, A., and Widiaratih, R., (2020), Studi Kinetika Adsorpsi dan Desorpsi Ion Fosfat (PO42-) di Sedimen Perairan Semarang dan Jepara, J. Ilmu dan Teknologi Kelautan Tropis, 12(2), 383-394. http://doi.org/10.29244/jitkt.v12i2.32392
  32. Mauladani, S., Rahmawati, A. I., Absirin, M. F., Saputra, R. N., Pratama, A. F., Hidayatullah, A., Dwiarto, A., Syarif, A., Junaedi, H., and Cahyadi, D., (2020), Economic Feasibility Study of Litopenaeus vannamei Shrimp Farming: Nanobubble Investment in Increasing Harvest Productivity, Jurnal Akuakultur Indonesia, 19(1), 30-38. https://doi.org/10.19027/jai.19.1.30-38
  33. Mente, E., Karalazos, V., Karapanagiotidis, I.T., and Pita, C., (2011), Nutrition in Organic Aquaculture : an Inquiry and A Discourse, Aquaculture Nutrition, 17(4), 798-817. https://doi.org/10.1111/j.1365-2095.2010.00846.x
  34. Milian-Sorribes, M.C., Tomas-Vidal, A., Penaranda, D.S., Carpintero, L., Mesa, J.S., Dupuy, J., Donadeu, A., Macias-Vidal, J., and Martínez-Llorens, S., (2021), Estimation of Phosphorus and Nitrogen Waste in Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792) Diets Including Different Inorganic Phosphorus Sources, Animals, 11, 1-14. https://doi.org/10.3390/ani11061700
  35. Mirzoyan, N., Tal, Y., and Gross, A., (2010), Anaerobic Digestion of Sludge from Intensive Re- Circulating Aquaculture Systems, Aquaculture, 306, 1–6. https://doi.org/10.1016/j.aquaculture.2010.05.028
  36. Mohd, S., Gafur, A., Hartanto, N., Sirajuddin, Anshar, Sabar, Arsyad, Zaenal, (2019), Perbaikan Manajemen Operasional IPAL pada Tambak Udang Vaname Intensif, Jurnal Perekayasaan Budidaya Air Payau, 5, 121-137
  37. Muchtar, Farkan, M., and Mulyono, M., (2021), Productivity of Vannamei Shrimp Cultivation (Litopenaeus vannamei) in Intensive Ponds in Tegal City, Central Java Province, Journal of Aquaculture and Fish Health, 10(2),147-154. doi: https://doi.org/10.20473/jafh.v10i2.18565
  38. Mustafa, A., (2017), Kandungan Total Zat Padat Tersuspensi dari Outlet Tambak Udang Intensif di Kabupaten Jepara, Jurnal Disprotek, 8 (1), 34-45. https://doi.org/10.34001/jdpt.v8i1.484
  39. Mutia, S., Nedi, S., and Elizal., (2021), Effect of Nitrate and Phospate Concentration on Spirulina platensis with Indoor Scale, Asian Journal of Aquatic Sciences, 4(1), 29-35. https://doi.org/10.31258/ajoas.4.1.29-35
  40. Nguyen, H.V., and Maeda, M., (2015), Nutrient Mass Balances In Intensive Shrimp Ponds with A Sludge Removal Regime: A Case Study in The Tam Giang Lagoon, Central Vietnam, Journal of Agricultural Science and Technology A and B & Hue University Journal of Science, 5, 538-547. https://doi.org/10.17265/2161-6256/2015.12.013
  41. Ni, M., Yuan, J., Zhang, L., Hua, J., Rong, H., and Gu, Z., (2021), In-situ and Ex-situ Purification Effect of Ecological Ponds of Euryale Ferox Salisb on Shrimp Aquaculture, Aquaculture, 540, 736678. https://doi.org/10.1016/j.aquaculture.2021.736678
  42. Nicholausa, R., Lukwambea, B., Zhaoa, L., Yanga, W., Zhua, J., and Zhenga, Z., (2019), Bioturbation of Blood Clam Tegillarca granosa on Benthic Nutrient Fluxes and Microbial Community in An Aquaculture Wastewater Treatment System, International Biodeterioration & Biodegradation, 142, 73-82. https://doi.org/10.1016/j.ibiod.2019.05.004
  43. Niiyama T., Toyohara H., and Tanaka K., (2012), Cellulase Activity in Blood Cockle (Anadara granosa) in the Matang Mangrove Forest Reserve, Malaysia, JARQ, 46, 355-359. https://doi.org/10.6090/jarq.46.355
  44. Nisar, U., Zhang, H., Navghan, M., Zhu, Y., and Mu, Y., (2021), Comparative Analysis of Profitability and Resource Use Efficiency Between Penaeus monodon and Litopenaeus vannamei in India, PLoS ONE, 16(5), 1-19. https://doi.org/10.1371/journal.pone.0250727
  45. Patil, P.K., Antony, L., Avunje, S., Viswanathan, B., Lalitha, N., Jangam, A.K., Kumar, D., Solanki, H.G., Reddy, M.A., and Vinayakarao, A., (2021), Bioaugmentation with Nitrifying and Denitrifying Microbial Consortia for Mitigation of Nitrogenous Metabolites in Shrimp Ponds, Aquaculture, 541(15), 1-10. https://doi.org/10.1016/j.aquaculture.2021.73
  46. Primavera, J.H., (1994), Shrimp Farming in The Asia Pacific: Environmental and Trade Issues and Regional Cooperation, Aquaculture Department, Southeast Asian Fisheries Development Center, Philippines, pp. 18-25
  47. Purcell, S.W., Patrois, J., and Fraisse, N., (2006), Experimental Evaluation of Co-Culture of Juvenile Sea Cucumbers, Holothuria scabra (Jaeger), with Juvenile Blue Shrimp, Litopenaeus stylirostris (Stimpson), Aquaculture Research, 37, 515-522 https://doi.org/10.1111/j.1365-2109.2006.01458.x
  48. Ritro, G., Lawrence, A.L., Neil, W.H., Samocha, T.M., Dixon, C.B., and Speed F., (1997), Elemental Acumulations in Soil of Shrimp Ponds in Six Years, World Aquaculture society in seattle, Washington
  49. Rosa, M., Ward, J.E., Holohan, B.A., Shumway, S.E., and Wikfors, G.H., (2017), Physicochemical Surface Properties of Microalgae and Their Combined Effects on Particle Selection by Suspension-Feeding Bivalve Molluscs, Journal of Experimental Marine Biology and Ecology, 486, 59–68. https://doi.org/10.1016/j.jembe.2016.09.007
  50. Sabilu, K., Supriyono, E., Nirmala, K., Jusadi, D., and Widanarni, (2020), Production Performance and Physiological Responses of Sea Cucumber (Holothuria scabra) Reared Using Penaeus Vannamei Pond Sediment as A Source of Nutrients, AACL Bioflux, 13(6), 3507-3519
  51. Saffian, N.S., Peng, C.T.C., Ilias, N., and Hwai, A.T.S., (2020), Overview and Challenges of Blood Cockle Culture in Malaysia, Proceeding of IOP Conference Series: Earth and Environmental Science, 414, 012020. https://doi.org/10.1088/1755-1315/414/1/012020
  52. Saif, M.L.M., Yusof, F., Rani, A., Apandi, A., and Jamari, Z., (2020), Blood Cockles Tegillarca granosa Growth Performance, International Journal of Fisheries and Aquatic Studies, 8(5), 269-276
  53. Salaenoi, J., Sukudom, C., Wongsin, T., and Sirisuay, S., (2015), Sediment Quality in Cockle Culture and Non-Cultured Area at Bandon Bay, Thailand, Proceeding of International Conference on Plant, Marine and Environmental Sciences, 110-114. http://dx.doi.org/10.15242/IICBE.C0115043
  54. Sari, L.A., Sari, P.D.W., Nindarwi, D.D., Arsad, S., and Affandi, M., (2019), Harmful Algae Identification in Bomo Water Environment, Banyuwangi, East Java, Indonesia, Ecology, Environment and Conservation, 25, S26-S31
  55. Satrioajie, W.N., (2012), Biologi dan Ekologi Kerang Bulu Anadara (Cunearca) pilula (REEVE, 1843), Oseana, 37(2), 1-9
  56. Setyastuti, T.A., Puspitasari, I., Sukamto, D., and Asmarany, A., (2020), Kelimpahan Bakteri Heterotrof Pada Tambak Dengan Jenis Mangrove Yang Berbeda Di Pulokerto Pasurua, Jurnal Chanos chanos, 18 (1), 7-17. http://dx.doi.org/10.15578/chanos%20chanos.v18i1.8961
  57. Setyono, D.E.D., (2007), Prospek Usaha Budidaya Kekerangan di Indonesia, Oseana, 32(1), 33-38
  58. Shull, D.H., (2019), Bioturbation. Encyclopedia of Ocean Sciences, 3rd Edition, United States (US), Elselvier Ltd, pp. 395-400
  59. Smith, F.S.J., and Briggs, M.R., (1998), Nutrient Budgets in Intensive Shrimp Ponds: Implications for Sustainability, Aquaculture, 164, 117–133. https://doi.org/10.1016/s0044-8486(98)00181-1
  60. Song, X., Pang, S., Guo, P., and Sun, Y., (2020), Evaluation of Carrying Capacity for Shrimp Pond Culture with Integrated Bioremediation Techniques, Aquaculture Research, 51, 761– 769. https://doi.org/10.1111/are.14426
  61. Sugiura, S.H., (2018), Phosphorus, Aquaculture, and the Environment, Reviews in Fisheries Science & Aquaculture, 26(4), 1-7. http://doi.org/10.1080/23308249.2018.1471040
  62. Suwartimah, K., Wulandari I.D., Hartati, R., and Redjeki, S., (2017), Komposisi Fitoplankton Pada Tambak Kerang, Jurnal Kelautan Tropis, 20(1), 65–71
  63. Ramli, M., and Riza, A.H. (2013). Feeding Cockles With Detritus Balls, J. Biol. Agric. Healthc, 3 (12), 102-107
  64. Sulistio, H.T., Efriyeldi, and Ghalib, M., (2002), Abundance and Distribution of Blood Clams (Anadara granosa) in Coastal Waters of Mekarbaru Village Kepulauan Meranti, Asian Journal of Aquatic Sciences, 3(1), 11-19
  65. Sulistiyaningsih, E., and Arbi, U.Y., (2020), Aspek Bio-Ekologi Dan Pemanfaatan Kerang Marga Anadara (Mollusca: Bivalvia: Arcidae), Oseana, 45(2), 69–85. https://doi.org/10.14203/oseana.2020.Vol.45No.2.95
  66. Suriya, M., Shanmugasundaram, S., and Mayavu, P., (2016), Stocking Density, Survival Rate, and Growth Performance of Litopenaeus vannamei (Boon, 1931) in Different Cultured Shrimp Farms, International Journal of Current Research in Biology and Medicine, 1 (4), 26–32. http://dx.doi.org/10.22192/ijcrbm.2016.01. 05.004
  67. Suwartimah, K., Wulandari, I.D., Hartati, R., and Redjeki, S., (2017), Komposisi Fitoplankton Pada Tambak Kerang, Jurnal Kelautan Tropis, 20(1), 65–71. https://doi.org/10.14710/jkt.v20i1.1364
  68. Suwoyo, H.S., Tahe, S., and Fahrur, M., (2015), Potential, Characteristics and Utilization of Shrimp Pond Solid Waste as Organic Fertilizer, International Journal of Environment, Agriculture and Biotechnology, 4(2), 411-421. https://doi.org/10.22161/ijeab/4.2.24
  69. Suwoyo, H.S., Tuwo, A., Haryati, and Anshary, H., (2019), Potential, Characteristics and Utilization of Shrimp Pond Solid Waste As Organic Fertilizer, International Journal of Environment, Agriculture and Biotechnology, 4(2), 411-421. https://doi.org/10.22161/ijeab/4.2.24
  70. Syah, R., Fahrur, M., Suwoyo, H.S.S., and Makmur., (2017), Performansi Instalasi Pengolah Air Limbah Tambak Superintensif, Media Akuakultur, 12 (2), 95-103. http://dx.doi.org/10.15578/ma.12.2.2017.95-103
  71. Syahira, S.N., Nithiyaa, N., Nooraini, I., and Tan, S.H.A., (2021), Preliminary Study on The Growth Development of Blood Cockle (Tegillarca granosa) by Using Different Substrates in The Hatchery System, Journal of Survey in Fisheries Sciences, 7(2), 71-78. https://doi.org/10.18331/SFS2021.7.2.6
  72. Syahrir, M., Renitasari, D.P., Ihwan and Saridu, S.A., (2021), Bioremidiation of Organic Waste Matter in White Legs Shrimp Ponds Using Blood Shells (Anadara granosa), Proceeding of IOP Conference Series: Earth and Environmental Science, 860, 012097. http://dx.doi.org/10.1088/1755-1315/860/1/012097
  73. Tampangallo, B.R., Asaad, A.I.J., Undu, M.C., Kadriah, I.K., and Anshary, H, (2020), Bacterial Diversity In Superintensive Vanname Shrimp Aquaculture Wastewater Treatment Plants in Barru and Takalar Regencies, Proceeding of IOP Conference Series: Earth and Environmental Science, 564 (1), 1-10. https://doi.org/10.1088/1755-1315/564/1/012007
  74. Tom, A.P., Jayakumar, J.S., Biju, M., Somarajan, J., and Ibrahim, M.A., (2021), Aquaculture Wastewater Treatment Technologies and Their Sustainability: A review, Energy Nexus, 100022, 1-9. https://doi.org/10.1016/j.nexus.2021.100022
  75. Verdegem, M.C.J., (2013), Nutrient Discharge from Aquaculture Operations in Function Of System Design and Production Environment, Reviews in Aquaculture, 5(3), 158–171. https://doi.org/10.1111/raq.12011
  76. Wisha, U.J., Ondara, K., and Ilham., (2018), The Influence of Nutrient (N and P) Enrichment and Ratios on Phytoplankton Abundance in Keunekai Waters, Weh Island, Indonesia, Makara Journal of Science, 22 (4), 187-197. http://doi.org/10.7454/mss.v22i4.9786
  77. Wittayanupakom, S., Musig, W., and Musig, Y., (2013), Filter Feeding by blood Cockle, Anadara granosa, for Water Quality Improvement in Closed Culture System of Pacific White Shrimp (Litopenaeus vanamei), Kasetsart University Fisheries Research Bulletin, 37(3), 1-12
  78. Wulandari, Cokrowati, N., Astriana, B.H., Diniarti, N., (2019), Penurunan Nilai Padatan Tersuspensi pada Limbah Tambak Udang Intensif Menggunakan Kerang Darah (Anadara granosa), Jurnal kelautan, 12(2), 123-130. https://doi.org/10.21107/jk.v12i2.6346
  79. Yang, P., Lai, D.Y.F., Jin, B., Bastviken, D., Tan, L., and Tong, C., (2017), Dynamics of Dissolved Nutrients in The Aquaculture Shrimp Ponds of The Min River Estuary, China: Concentrations, fluxes and Environmental Loads, Science of the Total Environment, (603–604), 256–267. https://doi.org/10.1016/j.scitotenv.2017.06.074
  80. You, Z., Xu, S., Bian, P., and Chen, J., (2001), The Effects of Sea Water Temperature and Salinity on The Growth and Survival of Tegillarca granosa Larvae and Juveniles, Acta Oceanologica Sinica, 23(6), 108-113
  81. Yuan, T., Guangcheng, C., Feilong, T., Chunfang Z., and Yong, Y.E., (2018), Effects of Different Types of Nutrient Effluent from Shrimp Ponds on The Seedling Growth of Kandelia obovata, Acta Oceanologica Sinica, 37(6), 112–120. https://doi.org/10.1007/s13131-018-1207-3
  82. Yulinda, E., Saad, M., & Yusuf, M., (2020), A Study on The Economic Potential of Blood Cockles (Anadara granosa) in Rokan Hilir, Riau Province, Indonesia, AACL Bioflux, 13(3), 1504-1510
  83. Yurimoto, T., Kassim, F.M., and Man, A., (2014), Digestive Tube Contents of Blood Cockle (Anadara granosa) in A Tropical Mangrove Estuary in Malaysia, International Journal of Aquatic Biology, 2(4), 180-183 https://doi.org/10.22034/ijab.v2i4.82

Last update:

No citation recorded.

Last update: 2024-05-20 14:02:11

No citation recorded.