skip to main content

Review Metode Kompos Aerob: Windrow, Takakura dan Composter Bag

1Master of Environmental Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

2Magister Teknik Lingkungan, Fakultas Teknik, Universitas Diponergoro, Indonesia

Received: 7 Jul 2023; Revised: 9 Oct 2023; Accepted: 10 Nov 2023; Available online: 4 Feb 2024; Published: 15 Feb 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract

Kenaikan penduduk setiap tahunnya menjadikan Tempat Pemrosesan Akhir (TPA) semakin padat oleh sampah sehingga diperlukannya pengolah sampah seperti pengomposan. Sampah organik dapat diubah menjadi humus dan dimanfaatkan kembali sebagai pupuk dengan pengomposan aerobik. Kompos aerob membutuhkan oksigen, porositas, dan kadar air yang berfungsi sebagai alat stabilisasi limbah padat dengan variabel seperti suhu, kelembaban, dan oksigen. Proses pengomposan memiliki beberapa fase yaitu fase dekomposisi, fase pendinginan, dan fase pematangan. Kualitas kompos dipengaruhi oleh pemilihan teknologi, limbah hijau yang digunakan, tingkat kejenuhan pada wadah yang digunakan untuk pengolahan, rasion C/N, pH, kelembaban, dan lama waktu pengomposan. Pembuatan kompos dengan teknik aerob bisa menggunakan macam-macam metode seperti Metode Vermicomposting merubah cacing menjadi kascing, Metode Takakura menggunakan box atau drum berongga, dan Metode Windrow sistem terbuka dengan tumpukan statis. Berdasarkan kajian literatur bahwa pewadahan ketiga metode tersebut dapat digantikan dengan Composting Bag. Composting Bag merupakan wadah kompos yang dapat digunakan untuk proses pembuatan kompos yang sederhana menggunakan teknik aerob. Berbahan dasar UV Resisten dan memiliki tekstur rongga menjadikan Composting Bag mampu bertahan di berbagai cuaca sehingga kestabilan proses pengomposan terjaga dan memberikan pertukaran udara yang bagus karena oksigen merupakan hal penting bagi pengomposan aerob. Selain itu, Composting Bag menjadi solusi untuk lahan yang sempit.

Fulltext View|Download
Keywords: Aerob; Composting Bag; Kompos; Takakura; Vermicomposting; Windrow

Article Metrics:

  1. Ahmad, A., Aslam, Z., Bellitürk, K., Iqbal, N., Naeem, S., Idrees, M., Kaleem, Z., Nawaz, M. Y., Nawaz, M., Sajjad, M., Rehman, W. U., Ramzan, H. N., Waqas, M., Akram, Y., Jamal, M. A., Ibrahim, M. U., Baig, H. A. T., & Kamal, A. (2021). Vermicomposting Methods from Different Wastes: An Environment Friendly, Economically Viable and Socially Acceptable Approach for Crop Nutrition: A Review. International Journal of Food Science and Agriculture, 5(1), 58–68. https://doi.org/10.26855/ijfsa.2021.03.009
  2. Al-khadher, S. A. A., Abdul Kadir, A., Al-Gheethi, A. A. S., & Azhari, N. W. (2021). Takakura composting method for food wastes from small and medium industries with indigenous compost. Environmental Science and Pollution Research, 28(46), 65513–65524. https://doi.org/10.1007/s11356-021-15011-0
  3. Andersen, J. K., Boldrin, A., Samuelsson, J., Christensen, T. H., & Scheutz, C. (2010). Quantifi cation of Greenhouse Gas Emissions from Windrow Composting of Garden Waste. TECHNICAL REPORTS: WASTE MANAGEMENT Quantifi, 39, 713–724. https://doi.org/10.2134/jeq2009.0329
  4. Aspray, T. J., Dimambro, M. E., Wallace, P., Howell, G., & Frederickson, J. (2015). Static, dynamic and inoculum augmented respiration based test assessment for determining in-vessel compost stability. Waste Management, 42, 3–9. https://doi.org/10.1016/j.wasman.2015.04.027
  5. Awasthi, M. K., Selvam, A., Lai, K. M., & Wong, J. W. C. (2017). Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium. Bioresource Technology, 245, 665–672. https://doi.org/10.1016/j.biortech.2017.09.014
  6. Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability (Switzerland), 12(11), 1–23. https://doi.org/10.3390/su12114456
  7. Azadi, S., Karimi-Jashni, A., Talebbeydokhti, N., Khoshbakht, R., & Haghighi, A. B. (2020). Industrial composting of commingled municipal solid waste: A case study of shiraz city, iran. Journal of Environmental Treatment Techniques, 8(4), 1292–1303. https://doi.org/10.47277/JETT/8(3)1303
  8. Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic Agriculture, 8(2), 141–158. https://doi.org/10.1007/s13165-017-0180-z
  9. Boutasknit, A., Anli, M., Tahiri, A., Raklami, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Ait Rahou, Y., Boutaj, H., Oufdou, K., Wahbi, S., El Modafar, C., & Meddich, A. (2020). Potential Effect of Horse Manure-green Waste and Olive Pomace-green Waste Composts on Physiology and Yield Of Garlic (Allium sativum L.) and Soil Fertility. Gesunde Pflanzen, 72(3), 285–295. https://doi.org/10.1007/s10343-020-00511-9
  10. Bruni, C., Akyol, C., Cipolletta, G., Eusebi, A. L., Caniani, D., Masi, S., Colon, J., & Fatone, F. (2020). Decentralized community composting: Past, present and future aspects of Italy. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083319
  11. Calleja-amador, C., & Romero-esquivel, L. G. (2018). Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places. https://doi.org/10.3390/resources7040084
  12. Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  13. Chaher, N. E. H., Chakchouk, M., Nassour, A., Nelles, M., & Hamdi, M. (2021). Potential of windrow food and green waste composting in Tunisia. Environmental Science and Pollution Research, 28(34), 46540–46552. https://doi.org/10.1007/s11356-020-10264-7
  14. Chelinho, S., Pereira, C., Breitenbach, P., Baretta, D., & Sousa, J. P. (2019). Quality standards for urban waste composts: The need for biological effect data. Science of the Total Environment, 694, 133602. https://doi.org/10.1016/j.scitotenv.2019.133602
  15. Chen, H., Awasthi, S. K., Liu, T., Duan, Y., Ren, X., Zhang, Z., Pandey, A., & Awasthi, M. K. (2020). Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. Journal of Hazardous Materials, 389(June), 121908. https://doi.org/10.1016/j.jhazmat.2019.121908
  16. Chowdhury, R. B., & Wijayasundara, M. (2021). Phosphorus circular economy of disposable baby nappy waste: Quantification, assessment of recycling technologies and plan for sustainability. Science of the Total Environment, 799, 149339. https://doi.org/10.1016/j.scitotenv.2021.149339
  17. Couth, R., & Trois, C. (2012). Cost effective waste management through composting in Africa. Waste Management, 32(12), 2518–2525. https://doi.org/10.1016/j.wasman.2012.05.042
  18. Dewilda, Y., Silvia, S., Riantika, M., & Zulkarnaini. (2021). Food Waste Composting with The Addition Of Cow Rumen Using The Takakura Method and Identification of Bacteria that Role in Composting. IOP Conference Series: Materials Science and Engineering, 1041(1), 012028. https://doi.org/10.1088/1757-899x/1041/1/012028
  19. Esmaeili, A., Reyahi, M., Gholami, M., & Eslami, H. (2020). Pistachio waste management using combined composting- vermicomposting technique : Physico-chemical changes and worm growth analysis. Journal of Cleaner Production, 242, 118523. https://doi.org/10.1016/j.jclepro.2019.118523
  20. Favoretto, B., Idowu, P., Atoloye, A., & Abosede, O. (2016). Chemical study of vermicomposted agroindustrial wastes. 55–63. https://doi.org/10.1007/s40093-016-0117-7
  21. Ghinea, C., & Leahu, A. (2020). Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical parameters. Processes, 8(3). https://doi.org/10.3390/pr8030302
  22. Gonawala, S. S., & Jardosh, H. (2018). Organic Waste in Composting : A brief review. International Journal of Current Engineering and Technology, 8(1), 36–38
  23. Gondek, M., Weindorf, D. C., Thiel, C., & Kleinheinz, G. (2020). Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Science and Utilization, 28(2), 59–75. https://doi.org/10.1080/1065657X.2020.1772906
  24. Grasserová, A., Hanc, A., Innemanová, P., & Cajthaml, T. (2020). Composting and vermicomposting used to break down and remove pollutants from organic waste: A mini review. European Journal of Environmental Sciences, 10(1), 9–14. https://doi.org/10.14712/23361964.2020.2
  25. Hamid, H. A., Pei Qi, L., Harun, H., Mohamed Sunar, N., Hanim Ahmad, F., & Suliza Muhamad, M. (2019). Development of Organic Fertilizer from Food Waste by Composting in UTHM Campus Pagoh. JDSE Journal of Design for Sustainable and Environment, 1(1), 1–6. http://www.fazpublishing.com/jdse
  26. Hemidat, S., Jaar, M., Nassour, A., & Nelles, M. (2018). Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste and Biomass Valorization, 9(12), 2257–2274. https://doi.org/10.1007/s12649-018-0197-x
  27. Hibino, K., Takakura, K., Febriansyah, Nugroho, S. B., Nakano, R., Ismaria, R., Hartati, T., Zusman, E., & Fujino, J. (2020). Operation Manual for Small-to-Medium Scale Compost Centres Using the Takakura Composting Method. Institute for Global Environmental Strategies, January, 52
  28. Hu, X., Zhang, T., Tian, G., Zhang, L., & Bian, B. (2021). Pilot-scale vermicomposting of sewage sludge mixed with mature vermicompost using earthworm reactor of frame composite structure. Science of the Total Environment, 767, 144217. https://doi.org/10.1016/j.scitotenv.2020.144217
  29. Ince, O., Ozbayram, E. G., Akyol, Ç., Erdem, E. I., Gunel, G., & Ince, B. (2020). Bacterial Succession in the Thermophilic Phase of Composting of Anaerobic Digestates. Waste and Biomass Valorization, 11(3), 841–849. https://doi.org/10.1007/s12649-018-0531-3
  30. Ince, O., Ozbayram, E. G., Akyol, Ç., Ince, O., & Ince, B. (2016). Composting practice for sustainable waste management: a case study in Istanbul. Desalination and Water Treatment, 57(31), 14473–14477. https://doi.org/10.1080/19443994.2015.1067170
  31. Jain, M. S., Paul, S., & Kalamdhad, A. S. (2020). Kinetics and physics during composting of various organic wastes: Statistical approach to interpret compost application feasibility. Journal of Cleaner Production, 255, 120324. https://doi.org/10.1016/j.jclepro.2020.120324
  32. Jalalipour, H., Jaafarzadeh, N., Morscheck, G., Narra, S., & Nelles, M. (2020). Potential of producing compost from source-separated municipal organic waste (A case study in Shiraz, Iran). Sustainability (Switzerland), 12(22), 1–17. https://doi.org/10.3390/su12229704
  33. Jiang, P., Fan, Y. Van, & Klemeš, J. J. (2021). Data analytics of social media publicity to enhance household waste management. Resources, Conservation and Recycling, 164(September 2020), 105146. https://doi.org/10.1016/j.resconrec.2020.105146
  34. Kasam, Iresha, F. M., Rahmani, V. F., Rahmat, A., Ramadhani, W. S., & Nurtanto, M. (2021). Physical Parameters of Compost Made from Cattle Farming Waste Using Vermicomposting Method. IOP Conference Series: Earth and Environmental Science, 933(1). https://doi.org/10.1088/1755-1315/933/1/012017
  35. Kaza, S., Yao, L., Bhada-tata, P., & Woerden, F. Van. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC, USA: The World Bank
  36. Khater, E. S. G. (2015). Some Physical and Chemical Properties of Compost. International Journal of Waste Resources, 05(01), 1–5. https://doi.org/10.4172/2252-5211.1000172
  37. Kong, Z., Wang, X., Liu, Q., Li, T., Chen, X., Chai, L., Liu, D., & Shen, Q. (2018). Evolution of various fractions during the windrow composting of chicken manure with rice chaff. Journal of Environmental Management, 207, 366–377. https://doi.org/10.1016/j.jenvman.2017.11.023
  38. Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G., & Heitman, J. L. (2020). The effects of compost incorporation on soil physical properties in urban soils – A concise review. Journal of Environmental Management, 261, 110209. https://doi.org/10.1016/j.jenvman.2020.110209
  39. Lemtiri, A., Colinet, G., Alabi, T., Clueau, D., Zirbes, L., Haubruge, E., & Francis, F. (2014). Impacts of earthworms on soil components and dynamics. Biotechnol. Agron. Soc. Environ, 18, 121–133. https://doi.org/10.1080/00397911.2017.1420801
  40. Liu, X., Rezaei Rashti, M., Dougall, A., Esfandbod, M., Van Zwieten, L., & Chen, C. (2018). Subsoil application of compost improved sugarcane yield through enhanced supply and cycling of soil labile organic carbon and nitrogen in an acidic soil at tropical Australia. Soil and Tillage Research, 180(November 2017), 73–81. https://doi.org/10.1016/j.still.2018.02.013
  41. Llonch, L., Castillejos, L., Mainau, E., Manteca, X., & Ferret, A. (2020). Effect of forest biomass as bedding material on compost-bedded pack performance, microbial content, and behavior of nonlactating dairy cows. Journal of Dairy Science, 103(11), 10676–10688. https://doi.org/10.3168/jds.2020-18496
  42. Lu, H. R., Qu, X., & Hanandeh, A. El. (2020). Towards a better environment - the municipal organic waste management in Brisbane: Environmental life cycle and cost perspective. Journal of Cleaner Production, 258, 120756. https://doi.org/10.1016/j.jclepro.2020.120756
  43. Mahapatra, S., Ali, M. H., & Samal, K. (2022). Assessment of compost maturity-stability indices and recent development of composting bin. Elsevier Ltd, 6(Energy Nexus), 100062. https://doi.org/https://doi.org/10.1016/j.nexus.2022.100062
  44. Masand, A., Chauhan, S., Jangid, M., Kumar, R., & Roy, S. (2021). ScrapNet: An Efficient Approach to Trash Classification. IEEE Access, 9, 130947–130958. https://doi.org/10.1109/ACCESS.2021.3111230
  45. Merhabi, A. (2020). Utilization of Compost: Use and Economical Value of Compost. Journal Siplieria Sciences, 1(2), 14–19. https://doi.org/10.48173/jss.v1i2.59
  46. Nanda, S., & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456. https://doi.org/10.1007/s10311-020-01100-y
  47. Niwagaba, C., Nalubega, M., Vinnerås, B., Sundberg, C., & Jönsson, H. (2009). Bench-scale composting of source-separated human faeces for sanitation. Waste Management, 29(2), 585–589. https://doi.org/10.1016/j.wasman.2008.06.022
  48. Nunik, E., & Anzi, A. K. (2018). Pengomposan Sampah Organik (Kubis dan Kulit Pisang) dengan Menggunakan EM4. Jurnal TEDC, 12(1), 38–43
  49. Nuzir, F. A., Hayashi, S., & Takakura, K. (2019). Takakura composting method (tcm) as an appropriate environmental technology for urban waste management. International Journal of Building, Urban, Interior and Landscape Technology (BUILT), 13(1), 67–82. https://doi.org/10.14456/built.2019.6
  50. Oluseyi, E. E., Ewemoje, T. A., & Adedeji, A. A. (2016). Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment. 10(3), 184–187
  51. Oviedo-Ocaña, E. R., Torres-Lozada, P., Marmolejo-Rebellon, L. F., Hoyos, L. V., Gonzales, S., Barrena, R., Komilis, D., & Sanchez, A. (2015). Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices. Waste Management, 44, 63–71. https://doi.org/10.1016/j.wasman.2015.07.034
  52. Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B., & Razak, S. A. (2020). Food waste composting and microbial community structure profiling. Processes, 8(6), 1–30. https://doi.org/10.3390/pr8060723
  53. Pellejero, G., Palacios, J., Vela, E., Gajardo, O., Albrecht, L., Aschkar, G., Chrorolque, A., García-Navarro, F. J., & Jiménez-Ballesta, R. (2021). Effect of the application of compost as an organic fertilizer on a tomato crop (Solanum lycopersicum l.) produced in the field in the lower valley of the río negro (argentina). International Journal of Recycling of Organic Waste in Agriculture, 10(2), 145–155. https://doi.org/10.30486/IJROWA.2021.1909797.1135
  54. Priyambada, I. B., & Wardana, I. W. (2018). Fast decomposition of food waste to produce mature and stable compost. Sustinere: Journal of Environment and Sustainability, 2(3), 156–167. https://doi.org/10.22515/sustinere.jes.v2i3.47
  55. Purwaningrum, Y., & Kusbiantoro, D. (2021). Several heavy metal remediation technologies in drinking water and wastewater treatment systems : A Review. 9(3)
  56. Rahmawati, T. I., Asriany, A., & Hasan, S. (2018). Kandungan Kalium Dan Rasio C / N Pupuk Organik Cair ( Poc ) Berbahan Daun-Daunan Dan Urine Kambing Dengan Penambahan Bioaktivator Ragi Tape ( Saccharomyces cerevisiae ) ( Postassium content and C / N ratio of Liquid Organic Fertilizer Made from The Leaves. 50–60
  57. Rastogi, M., Nandal, M., & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon, 6(2), e03343. https://doi.org/10.1016/j.heliyon.2020.e03343
  58. Rodrigues, L. C., Puig-Ventosa, I., López, M., Martínez, F. X., Ruiz, A. G., & Bertrán, T. G. (2020). The impact of improper materials in biowaste on the quality of compost. Journal of Cleaner Production, 251. https://doi.org/10.1016/j.jclepro.2019.119601
  59. Ruslinda, Y., Aziz, R., Sari, N., & Arum, L. S. (2021). The effect of chopping raw material on composting result with the biopore infiltration hole method. IOP Conference Series: Materials Science and Engineering, 1041(1), 012033. https://doi.org/10.1088/1757-899x/1041/1/012033
  60. Samal, K., Dash, R. R., & Bhunia, P. (2017). Treatment of wastewater by vermifiltration integrated with macrophyte filter: A review. Journal of Environmental Chemical Engineering, 5(3), 2274–2289. https://doi.org/10.1016/j.jece.2017.04.026
  61. Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69(26), 136–153. https://doi.org/10.1016/j.wasman.2017.08.012
  62. Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111838
  63. Schott, A. B. S., Wenzel, H., & Jansen, J. L. C. (2016). Identification of decisive factors for greenhouse gas emissions in comparative life cycle assessments of food waste management - An analytical review. Journal of Cleaner Production, 119, 13–24. https://doi.org/10.1016/j.jclepro.2016.01.079
  64. Sharma, V. (2021). Windrow Composting As Municipal Solid Waste Stabilization -A Windrow Composting As Municipal Solid Waste Stabilization – A Case Study In Chandigarh. September
  65. Shi, Z., Liu, J., Tang, Z., Zhao, Y., & Wang, C. (2020). Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Applied Soil Ecology, 147(October 2019), 103377. https://doi.org/10.1016/j.apsoil.2019.103377
  66. Sholokhova, A., Denafas, G., Ceponkus, J., & Kriukiene, R. (2023). Microplastics Release from Conventional Plastics during Real Open Windrow Composting. Sustainability, 15, 758
  67. Siagian, S. W., Yuriandala, Y., & Maziya, F. B. (2021). Analisis Suhu, Ph Dan Kuantitas Kompos Hasil Pengomposan Reaktor Aerob Termodifikasi Dari Sampah Sisa Makanan Dan Sampah Buah. Jurnal Sains &Teknologi Lingkungan, 13(2), 166–176. https://doi.org/10.20885/jstl.vol13.iss2.art7
  68. Singh, A., Karmegam, N., Singh, G. S., Bhadauria, T., Chang, S. W., Awasthi, M. K., Sudhakar, S., Arunachalam, K. D., Biruntha, M., & Ravindran, B. (2020). Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environmental Geochemistry and Health, 42(6), 1617–1642. https://doi.org/10.1007/s10653-019-00510-4
  69. Song, B., Manu, M. K., Li, D., Wang, C., Varjani, S., Ladumor, N., Michael, L., Xu, Y., & Wong, J. W. C. (2021). Food waste digestate composting: Feedstock optimization with sawdust and mature compost. Bioresource Technology, 341(August), 125759. https://doi.org/10.1016/j.biortech.2021.125759
  70. Sumiyati, S., Priyambada, I. B., Zahra, S. A. F., Pradhana, D. R., Haritsa, R. T., Rahman, T., Haq, M. F. Q., & Harjanti, A. W. P. (2022). Addition of Local Microorganisms (MOL) Organic Waste as Compost Bioactivator. IOP Conference Series: Earth and Environmental Science, 1098(1). https://doi.org/10.1088/1755-1315/1098/1/012057
  71. Tong, J., Sun, X., Li, S., Qu, B., & Wan, L. (2018). Reutilization of green waste as compost for soil improvement in the afforested land of the Beijing Plain. Sustainability (Switzerland), 10(7), 1–17. https://doi.org/10.3390/su10072376
  72. Tratsch, M. V. M., Ceretta, C. A., da Silva, L. S., Ferreira, P. A. A., & Brunetto, G. (2019). Composition and mineralization of organic compost derived from composting of fruit and vegetable waste. Revista Ceres, 66(4), 307–315. https://doi.org/10.1590/0034-737X201966040009
  73. Vairagade, V. S., & Vairagade, S. A. (2019). Waste Management and Resource Efficiency. In Waste Management and Resource Efficiency. Springer Singapore. https://doi.org/10.1007/978-981-10-7290-1
  74. Vaverková, M. D., Adamcová, D., Winkler, J., Koda, E., Petrželová, L., & Maxianová, A. (2020). Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks. Science of the Total Environment, 723, 1–8. https://doi.org/10.1016/j.scitotenv.2020.137971
  75. Wei, Yunmei, Li, J., Shi, D., Liu, G., Zhao, Y., & Shimaoka, T. (2017). Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resources, Conservation and Recycling, 122, 51–65. https://doi.org/10.1016/j.resconrec.2017.01.024
  76. Wei, Yuquan, Wang, N., Lin, Y., Zhan, Y., Ding, X., Liu, Y., Zhang, A., Ding, G., Xu, T., & Li, J. (2021). Recycling of nutrients from organic waste by advanced compost technology- A case study. Bioresource Technology, 337(April). https://doi.org/10.1016/j.biortech.2021.125411
  77. Wikurendra, E. A., Nurika, G., Herdiani, N., & Lukiyono, Y. T. (2022). Evaluation of the Commercial Bio-Activator and a Traditional Bio-Activator on Compost Using Takakura Method. 23(6), 278–285
  78. Yu, K., Li, S., Sun, X., Cai, L., Zhang, P., Kang, Y., Yu, Z., Tong, J., & Wang, L. (2019). Application of seasonal freeze-thaw to pretreat raw material for accelerating green waste composting. Journal of Environmental Management, 239(February), 96–102. https://doi.org/10.1016/j.jenvman.2019.02.128
  79. Zhou, X., Yang, J., Xu, S., Wang, J., Zhou, Q., Li, Y., & Tong, X. (2020). Rapid in-situ composting of household food waste. Process Safety and Environmental Protection, 141, 259–266. https://doi.org/10.1016/j.psep.2020.05.039
  80. Zhu-barker, X., Bailey, S. K., U, K. T. P., Burger, M., & Horwath, W. R. (2016). Greenhouse gas emissions from green waste composting windrow. Waste Management. https://doi.org/10.1016/j.wasman.2016.10.00

Last update:

No citation recorded.

Last update: 2024-05-09 18:40:17

No citation recorded.